Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T15:29:12.485Z Has data issue: false hasContentIssue false

Pathophysiology of amniotic fluid volume homoeostasis

Published online by Cambridge University Press:  10 October 2008

Michael G Ross*
Affiliation:
Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance, USA
M Gore Ervin
Affiliation:
Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance, USA
*
Michael G Ross MD, Associate Professor of Obstetrics and Gynecology, Harbor-UCLA Medical Center, UCLA School of Medicine, Torrance, CA 90509, USA.

Extract

Human and ovine fetuses produce and absorb prodigious amounts of water and electrolytes daily. As will be described, fetal fluid exchange approximates to 300–400ml/kg per day near term. On a per kilogram basis, this is equivalent to an adult ingesting and secreting 15–20 litres per day. Upon delivery, the newborn rapidly adjusts to a much reduced rate of fluid exchange. In this respect, the fetus resembles an amphibian during development: an aquatic phase of in utero gestation and a comparatively arid state following delivery. Although the amphibian-like pattern of development may be partly an example of ‘ontogeny recapitulates phylogeny’, the remarkable volume of fetal fluid exchange suggests an important physiological role for amniotic fluid.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schlievert, P, Johnson, W, Galask, RP. Bacterial inhibition by amniotic fluid VI. Evidence for a zincpeptide antibacterial system. Am J Obstet Gynecol 1976; 125: 899905.CrossRefGoogle ScholarPubMed
2Bain, AD, Scott, JS. Renal agenesis and severe urinary tract dysplasia. A review of 50 cases with particular reference to the associated anomalies. Br Med J 1960; 1: 841–46.CrossRefGoogle Scholar
3Thomas, IT, Smith, DW. Oligohydramnios, cause of the non-renal features of Potter’s syndrome, including pulmonary hypoplasia. J Pediatr 1974; 84: 811–15.CrossRefGoogle Scholar
4Manning, FA, Hill, LM, Platt, LD. Quantitative amniotic fluid volume determination by ultrasound. Antepartum detection of intrauterine growth retardation. Am J Obstet Gynecol 1981; 139: 254–58.CrossRefGoogle Scholar
5Phillipson, EH, Sokol, RJ, Williams, T. Oligohydramnios: clinical associations and predictive value for intrauterine growth retardation. Am J Obstet Gynecol 1983; 146: 271–76.CrossRefGoogle Scholar
6Miyazaki, FS, Nevarez, F. Saline amnioinfusion for relief of repetitive variable decelerations: a prospective randomized study. Am J Obstet Gynecol 1985; 153: 301306.CrossRefGoogle ScholarPubMed
7Queenan, JT, Gadow, EC. Polyhydramnios: chronic versus acute. Am J Obstet Gynecol 1970; 108: 349–55.CrossRefGoogle ScholarPubMed
8Brace, RA, Wolf, EF. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol 1989; 161: 382–88.CrossRefGoogle ScholarPubMed
9Lind, T. The biochemistry of amniotic fluid. In: Fairweather, DVI, Eskes, TKAB eds. Amniotic fluid: research and clinical applications, second edition. Amsterdam: Excerpta Medica, 1978: 5980.Google Scholar
10Bazer, FW. Allantoic fluid: regulation of volume and composition. In: Brace, RA, Ross, MG, Robillard, JE eds. Fetal and neonatal body fluids: the scientific basis for clinical practice. Ithaca, NY: Perinatology Press, 1989: 135–57.Google Scholar
11Kurjak, A, Kirkinen, P, Latin, V, Ivankovic, D. Ultrasonic assessment of fetal kidney function in normal and complicated pregnancies. Am J Obstet Gynecol 1981; 141: 266–70.CrossRefGoogle ScholarPubMed
12Rabinowitz, R, Peters, MT, Vyas, S, Campbell, S, Nicolaides, KH. Measurement of fetal urine production in normal pregnancy by real-time ultrasonography. Am J Obstet Gynecol 1989; 161: 1264–66.CrossRefGoogle ScholarPubMed
13Wlodek, ME, Challis, JRG, Patrick, J. Urethral and urachal urine output to the amniotic and allantoic sacs in fetal sheep. J Dev Physiol 1988; 10: 309–19.Google Scholar
14Lingwood, B, Hardy, KJ, Horacek, D, McPhee, ML, Scoggins, BA, Wintour, EM. The effects of antidiuretic hormone on urine flow and composition in the chronically-cannulated ovine fetus. Q J Exp Physiol 1978; 63: 315–23.CrossRefGoogle ScholarPubMed
15Aperia, A, Broberger, O, Herin, P, Joelsson, I. Renal haemodynamics in the perinatal period: a study in lambs. Acta Physiol Scand 1977; 99: 261–69.CrossRefGoogle ScholarPubMed
16Robillard, JE, Weitzman, RE. Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 1980; 238: F40714.Google ScholarPubMed
17Robillard, JE, Kilvinskas, C, Sessions, C, Burmeister, L, Smith, FG. Maturational changes in the fetal glomerular filtration rate. Am J Obstet Gynecol 1977; 128: 727–34.CrossRefGoogle Scholar
18Robillard, JE, Sessions, C, Kennedy, RL, Robillard, LH, Smith, FG. Inter-relationship between glomerular filtration rate and rental transport of sodium and chloride during fetal life. Am J Obstet Gynecol 1977; 128: 727–34.CrossRefGoogle Scholar
19Wintour, EM, Congiu, M, Hardy, KJ, Hennessy, DP. Regulation of urine osmolality in fetal sheep. Q J Exp Physiol 1982; 67: 427–35.CrossRefGoogle ScholarPubMed
20Robillard, JE, Weitzman, RE, Burmeister, L, Smith, FG. Developmental aspects of the renal response to hypoxia in the lamb fetus. Circ Res 1981; 48: 128–31.CrossRefGoogle ScholarPubMed
21Ross, MG, Ervin, MG, Leake, RD, Habeeb, O, Fisher, DA. Isovolemic hypotension in the ovine fetus: plasma arginine vasopressin response and urinary effects. Am J Physiol 1986; 13: E56469.Google Scholar
22Ross, MG, Ervin, MG, Leake, RD, Humme, J, Fisher, DA. Continuous ovine fetal hemorrhage: sensitivity of plasma and urine arginine vasopressin response. Am J Physiol 1986; 251: R46469.Google ScholarPubMed
23Ross, MG, Sherman, DJ, Ervin, MG, Castro, R, Humme, J. Maternal dehydration: fetal plasma and urinary response. Am J Physiol 1988; 255: E67479.Google Scholar
24Wintour, EM, Bell, RJ, Congiu, M, Maclsaac, RJ, Wang, X. The value of urine osmolality as an index of stress in the ovine fetus. J Dev Physiol 1985; 7: 347–54.Google ScholarPubMed
25Robillard, JE, Weissmann, DN, Gomez, RA, Ayres, NA, Lawton, WJ, Van Orden, DE. Renal and adrenal responses to converting-enzyme inhibition in fetal and newborn life. Am J Physiol 1983; 244: R24956.Google ScholarPubMed
26Robillard, JE, Nakamura, KT, Wilkin, MK, McWeeny, OJ, DiBona, GF. Ontogeny of renal hemodynamic response to renal nerve stimulation in sheep. Am J Physiol 1987; 252: F60512.Google ScholarPubMed
27Robillard, JE, Nakamura, KT, Lawton, W. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res 1985; 19: 1048–52.CrossRefGoogle ScholarPubMed
28Ervin, MG, Ross, MG, Youssef, A, Leake, RD, Fisher, DA. Renal effects of ovine fetal arginine vasopressin secretion in response to maternal hyperosmolality. Am J Obstet Gynecol 1986; 155: 1341–47.CrossRefGoogle ScholarPubMed
29Castro, R, Ervin, MG, Leake, RD, Ross, MG, Sherman, DJ, Fisher, DA. Fetal renal response to atrial natriuretic factor decreases with maturation. Am J Physiol 1991; 260: R34652.Google ScholarPubMed
30Perlman, M, Potashnik, G, Wise, S. Hydramnion and fetal renal anomalies. Am J Obstet Gynecol 1976; 125: 966–68.CrossRefGoogle ScholarPubMed
31Golbus, MS, Filly, RA, Callen, PW, Glick, PL, Harrison, MR, Anderson, RL. Fetal urinary tract obstruction: management and selection for treatment. Semin Perinatol 1985; 9: 9197.Google ScholarPubMed
32Olver, RE, Strang, LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the fetal lamb. J Physiol 1974; 241: 327–57.CrossRefGoogle Scholar
33Mescher, EJ, Platzker, ACG, Ballard, PL, Kitterman, JA, Clements, JA, Tooley, WH. Ontogeny of tracheal fluid, pulmonary surfactant, and plasma corticoids in the fetal lamb. J Appl Physiol 1975; 39: 1017–21.CrossRefGoogle ScholarPubMed
34Olver, RE, Schneeburger, EE, Walters, DV. Epithelial solute permeability, ion transport and tight junction morphology in the developing lung of the fetal lamb. J Physiol 1981; 315: 395412.CrossRefGoogle ScholarPubMed
35Harding, R, Bocking, AD, Sigger, JN. Upper airway resistances in fetal sheep: the influence of breathing activity. J Appl Physiol 1986; 60: 160–65.CrossRefGoogle ScholarPubMed
36Harding, R, Sigger, JN, Poore, ER, Johnson, P. Ingestion in fetal sheep and its relation to sleep states and breathing movements. Q J Exp Physiol 1984; 69: 477–86.CrossRefGoogle ScholarPubMed
37Harding, R, Bocking, AD, Sigger, JN, Wickman, PJD. Composition and volume of fluid swallowed by fetal sheep. Q J Exp Physiol 1984; 69: 487–95.CrossRefGoogle ScholarPubMed
38Maloney, JE, Alcorn, D, Bowes, G, Wilkinson, M. Development of the fetal respiratory system. Semin Perinatol 1980; 4: 251–60.Google Scholar
39Perks, AM, Cassin, S. The effects of arginine vasopressin and other factors on the production of lung fluid in fetal goats. Chest 1982; 81 (suppl): 63S65S.CrossRefGoogle Scholar
40Ross, MG, Ervin, G, Leake, RD, Fu, P, Fisher, DA. Fetal lung liquid regulation by neuropeptides. Am J Obstet Gynecol 1984; 150: 421–25.CrossRefGoogle ScholarPubMed
41Walters, DV, Olver, RE. The role of catecholamines in lung liquid absorption at birth. Pediatr Res 1978; 12: 239–42.CrossRefGoogle ScholarPubMed
42Sherman, DJ, Ross, MG, Ervin, MG, Castro, R, Hobel, CJ, Fisher, DA. Ovine fetal lung fluid response to intravenous saline solution infusion: fetal atrial natriuretic factor effect. Am J Obstet Gynecol 1988; 159: 1347–52.CrossRefGoogle ScholarPubMed
43Cassin, S, Perks, AM. Studies of factors which stimulate lung fluid secretion in fetal goats. J Dev Physiol 1982; 4: 311–25.Google ScholarPubMed
44Castro, R, Ervin, MG, Ross, MG, Sherman, DJ, Leake, RD, Fisher, DA. Ovine fetal lung fluid response to atrial natriuretic factor. Am J Obstet Gynecol 1989; 161: 1337–43.CrossRefGoogle ScholarPubMed
45Kitterman, JA, Ballard, PL, Clements, JA, Mescher, EJ, Tooley, WH. Tracheal fluid in fetal lambs: spontaneous decrease prior to birth. J Appl Physiol 1979; 47: 985–89.CrossRefGoogle ScholarPubMed
46Kohler, HG, Rymer, FA. Congenital cystic malformation of the lung and its relation to hydramnios. J Obstet Gynaecol Brit Commonw 1973; 80: 130–34.CrossRefGoogle ScholarPubMed
47Dickson, KA, Harding, R. Decline in lung liquid volume and secretion rate during oligohydramnios in fetal sheep. J Appl Physiol 1989; 67: 2401–407.CrossRefGoogle ScholarPubMed
48McLain, CR. Amniography studies of the gastrointestinal motility of the human fetus. Am J Obstet Gynecol 1963; 86: 1079–87.CrossRefGoogle ScholarPubMed
49Abramovich, DR. Fetal factors influencing the volume and composition of liquor amnii. Br J Obstet Gynecol 1970; 77: 865–77.CrossRefGoogle ScholarPubMed
50Pritchard, JA. Fetal swallowing and amniotic fluid volume. Obstet Gynecol 1966; 28: 606–16.Google ScholarPubMed
51Bowie, JD, Clark, MR. Fetal swallowing and regurgitation: observation of normal and abnormal activity. Radiology 1982; 144: 877–78.CrossRefGoogle ScholarPubMed
52Cooper, C, Mahony, B, Bowie, B, Albright, TO, Callen, PW. Ultrasound evaluation of the normal fetal upper airway and esophagus. J Ultrasound Med 1985; 4: 343–46.CrossRefGoogle ScholarPubMed
53Bradley, RM, Mistretta, CM. Swallowing in fetal sheep. Science 1973; 179: 1016–17.CrossRefGoogle ScholarPubMed
54Tomada, S, Brace, RA, Longo, LD. Fate of labelled albumin and erythrocytes following injection into amniotic cavity of sheep. Am J Physiol 1986; 251: R78186.Google Scholar
55Sherman, DJ, Ross, MG, Day, L, Ervin, MG. Fetal swallowing: correlation of electromyography and esophageal fluid flow. Am J Physiol 1990; 258: R138694.Google ScholarPubMed
56Ross, MG, Sherman, DJ, Ervin, MG, Day, L, Humme, J. Stimuli for fetal swallowing: systemic factors. Am J Obstet Gynecol 1989; 161: 1559–65.CrossRefGoogle ScholarPubMed
57Ross, MG, Sherman, DJ, Ervin, MG, Day, L, Humme, J. Fetal swallowing: response to systemic hypotension. Am J Physiol 1990; 258: R13034.Google ScholarPubMed
58Sherman, D, Ross, MG, Humme, J, Ervin, MG, Hobel, CJ. Effects of mild and moderate hypoxia on fetal swallowing. Clin Res 1989; 37: 179A.Google Scholar
59Smith, FG, Lumber, ER, Kesby, GJ. The renal response to the ingestion of fluid by the fetal sheep. J Dev Physiol 1986; 8: 259–66.Google Scholar
60Ross, MG, Sherman, D, Ervin, MG, Humme, J, Gimpel, J. Fetal plasma and renal responses to gastric fluid. Am J Obstet Gynecol 1989; 159: 1407–12.CrossRefGoogle Scholar
61Ross, MG, Ervin, MG, Leake, RD, Fisher, DA. Amniotic fluid ionic concentration in response to fetal vasopressin. Am J Physiol 1985; 249: E28791.Google ScholarPubMed
62Schreyer, P, Sherman, DJ, Ervin, MG, Day, L, Ross, MG. Maternal dehydration: impact on amniotic fluid volume and composition. J Dev Physiol 1990; 13: 283–87.Google ScholarPubMed
63Minei, LKJ, Suzuki, R. Role of fetal deglutition and micturition in the production and turnover of amniotic fluid in the monkey. Obstet Gynecol 1976; 48: 177–81.Google ScholarPubMed
64Wintour, EM, Barns, A, Brown, EH. Regulation of amniotic fluid volume and composition in the ovine fetus. Obstet Gynecol 1978; 52: 689–93.Google ScholarPubMed
65Fujino, Y, Agnew, CL, Schreyer, P, Ervin, MG, Day, LA, Ross, MG. Polyhydramnios induced by ovine fetal esophageal occlusion. Clin Res 1991; 39: 71A.Google Scholar
66Pierro, A, Cozzi, R, Colarossi, G, Irving, IM, Pierce, Am, Lister, J. Does fetal gut obstruction cause hydramnios and growth retardation? J Pediatr Surg 1987; 22: 454–57.CrossRefGoogle ScholarPubMed
67Pritchard, JA. Deglutition of normal and anencephalic fetuses. Obstet Gynecol 1965; 25: 289–97.Google ScholarPubMed
68Gilbert, WM, Brace, RA. The missing link in amniotic fluid volume regulation: intramembranous absorption. Obstet Gynecol 1989; 74: 748–54.Google ScholarPubMed
69Ross, MG, Sherman, DJ, Schreyer, P, Ervin, MG, Day, L, Humme, JS. Fetal rehydration via intraamniotic fluid: contribution of fetal swallowing. Pediatr Res 1991; 29: 214–17.CrossRefGoogle ScholarPubMed
70Raabe, MA, McCoshen, JA. Epithelial regulation of prolactin effect on amniotic permeability. Am J Obstet Gynecol 1968; 154: 130–36.CrossRefGoogle Scholar
71Schroder, HJ. Basics of placental structures and transfer functions. In: Brace, RA, Ross, MG, Robillard, JE eds. Fetal and neonatal body fluids: the scientific basis for clinical practice. Ithaca, NY: Perinatology Press, 1989: 187227.Google Scholar
72Faber, JJ, Anderson, DF. Model study of placental water transfer and causes of water disease in sheep. Am J Physiol 1990; 258: R125770.Google ScholarPubMed
73Rankin, JHG, Gresham, DL, Battaglia, FC, Makowski, EL, Meschia, G. Measurement of fetal renal inulin clearance in a chronic sheep preparation. J Appl Physiol 1972; 32: 129–33.CrossRefGoogle Scholar
74Konduri, GG, Fewell, JE. Oligohydramnios. In: Brace, RA, Ross, MG, Robillard, JE eds. Fetal and neonatal body fluids: the scientific basis for clinical practice, Ithaca, NY: Perinatology Press, 1989: 158–74.Google Scholar
75Hill, LM, Breckle, R, Thomas, ML, Fries, JK. Polyhydramnios: ultrasonically detected prevalence and neonatal outcome. Obstet Gynecol 1987; 69: 2125.Google ScholarPubMed
76Mamopoulos, M, Assimakopoulos, E, Reece, EA, Andreou, AA, Zheng, X, Mantalenakis, S. Maternal indomethacin therapy in the treatment of polyhydramnios. Am J Obstet Gynecol 1990; 162: 1225–29.CrossRefGoogle ScholarPubMed
77Sadovsky, Y, Amon, E, Bade, ME, Petrie, RH. Prophylactic amnioinfusion during labor complicated by meconium: a preliminary report. Am J Obstet Gynecol 1989; 161: 613–17.CrossRefGoogle ScholarPubMed