Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T14:40:31.118Z Has data issue: false hasContentIssue false

INTRAPARTUM ST ANALYSIS

Published online by Cambridge University Press:  01 November 2008

HÅKAN NORÉN
Affiliation:
Department of Obstetrics and Gynaecology, Sahlgren's University Hospital, Gothenburg.
KARL G ROSÉN*
Affiliation:
Department of Engineering, University of Borås, Borås, Sweden.
*
KG Rosén, Karantänsgatan 13, SE 44235 Kungälv, Sweden.

Extract

The last century has seen dramatic developments in medical care as technological advances have been applied to both diagnosis and treatment. Some areas of obstetrics have been slow to benefit from these advances – and none more so than the care of the fetus in labour.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Steer, PJ, Eigbe, F, Lissauer, TJ, Beard, RW. Interrelationships among abnormal cardiotocograms in labour, meconium staining of the amniotic fluid, arterial cord blood pH, and Apgar scores. Obstet Gynecol 1989; 74: 715–21.Google Scholar
2Intrapartum care, NICE Clinical Guidelines, RCOG press, 2007; p 225.Google Scholar
3Bloom, SL, Spong, CY, Thom, E, Varner, MW, Rouse, DJ, Weininger, S et al. . Fetal pulse oximetry and cesarean delivery. N Engl J Med 2006; 355: 2195–202.CrossRefGoogle ScholarPubMed
4Nelson, KB, Can we prevent derebral palsy. N Engl J Med 2003; 349: 1765–69.Google Scholar
5Nelson, KB, Ellenberg, JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med 1986; 315: 8186.CrossRefGoogle ScholarPubMed
6Shier, D, Tilson, LJ. The Temporal Stage Fallacy: A novel statistical fallacy in the medical literature, Med Health Care Philos 2006; 9: 243–47.Google Scholar
7Nelson, KB, Ellenberg, JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Eng J Med 1986; 315: 8186.CrossRefGoogle ScholarPubMed
8Hagberg, B, Hagberg, G, Beckung, E, Uvebrant, P. Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991–94. Acta Paediatr 2001: 90; 271–77.Google Scholar
9Meberg, A, Broch, H. Etiology of cerebral palsy. J Perinat Med 2004; 32: 434–39.Google Scholar
10Cowan, F, Rutherford, M, Groenendaal, F, Eken, P, Mercuri, E, Bydder, GM et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003; 361: 713–14.CrossRefGoogle ScholarPubMed
11Confidential enquiry into stillbirths and deaths in infancy (CESDI). Highlights of the 4th annual report. Pract Midwife 1995; 1.Google Scholar
12Hon, EH, Quilligan, EJ. The classification of fetal heart rate. II. A revised working classification. Conn Med 1967; 31: 779–84.Google Scholar
13Nielsen, PV, Stigsby, B, Nickelsen, C, Nim, J. Intra- and inter-observer variability in the assessment of intrapartum cardiotocograms. Acta Obstet Gynecol Scand 1987; 66: 421–24.Google Scholar
14Donker, DK, Van Geijn, HP, Hasman, A. Interobserver variation in the assessment of fetal heart rate recordings. Eur J Obstet Gynecol Reprod Biol 1993; 52: 2128.CrossRefGoogle ScholarPubMed
15Bernardes, J, Costa-Pereira, A, Ayres-de-Campos, D, Van Geijn, HP, Pereira-Leite, L. Evaluation of interobserver agreement of cardiotocograms. Int J Gynaecol Obstet 1997; 57: 3337.Google Scholar
16Amer-Wahlin, I, Dekker, S. Fetal monitoring–a risky business for the unborn and for clinicians. BJOG 2008; 115: 935–37.CrossRefGoogle ScholarPubMed
17Low, JA, Panagiotopoulos, C, Derrick, EJ. Newborn complications after intrapartum asphyxia with metabolic acidosis in the term fetus. Am J Obstet Gynecol 1994; 170: 10811087.CrossRefGoogle ScholarPubMed
18Ingemarsson, I, Herbst, A, Thorngren-Jerneck, K, Long term outcome after umbilical artery acidaemia at term birth: influence of gender and duration of fetal heart rate abnormalities. BJOG 1997; 104: 1123–127.Google Scholar
19Fee, SC, Malee, K, Deddish, R, Minogue, JP, Socol, ML. Severe acidosis and subsequent neurologic status. Am J Obstet Gynecol 1990; 162: 802806.Google Scholar
20Nagel, HTC, Vandenbussche, FPHA, Oepkes, D, Jennekens-Schinkel, A, Laan, LAEM, Bennebroek Gravenhorst, J. Follow up of children born with an umbilical arterial blood pH 7.0. Am J Obstet Gynecol 1995; 173: 1758–764.Google Scholar
21Dennis, J, Johnson, A, Mutch, L, Yudkin, P, Johnson, P. Acid base status at birth and neuro-developmental outcome at four and one-half years. Am J Obstet Gynecol 1989; 161: 213–20.Google Scholar
22Siggaard-Andersen, O. An acid base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 1971; 27: 239–45.Google Scholar
23Rosén, KG, Murphy, K. How to assess fetal metabolic acidosis from cord samples. J Perinat Med 1991; 19: 221–26.Google Scholar
24Westgate, J, Garibaldi, JM, Greene, KR. Umbilical cord blood gas analysis at delivery: a time for quality data. Br J Obstet Gynaecol 1994; 101: 1054–63.CrossRefGoogle ScholarPubMed
25MacLennan, A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. Br Med J 1999; 319: 1054–59.Google Scholar
26Sundstrom, AK, Rosen, D, Rosen, KG. Fetal surveillance, Neoventa Medical 2000.Google Scholar
27Amer-Wahlin, I, Bördahl, P, Eikeland, T, Hellsten, C, Norén, H, Sörnes, T et al. ST analysis of the fetal electrocardiogram during labour: Nordic observational multicenter study. J Mat Fet Neonat Med 2002; 12: 260–66.Google Scholar
28Widmark, C, Lindecrantz, K, Murray, H, Rosen, KG. Changes in the PR, RR intervals and ST waveform of the fetal lamb electrocardiogram with acute hypoxemia. J Dev Physiol 1992; 18: 99103.Google Scholar
29Luzietti, R, Erkkola, R, Hasbargen, U, Mattson, LA, Thoulon, JM, Rosen, KG. European Community Multicentre Trial “Fetal ECG Analysis During Labour”: the P-R interval. J Perinat Med 1997; 25: 2734.Google Scholar
30Oudijk, MA, Kwee, A, Visser, GH, Blad, S, Meijboom, EJ, Rosen, KG. The effects of intrapartum hypoxia on the fetal QT interval. BJOG 2004; 111: 656–60.CrossRefGoogle ScholarPubMed
31Fenn, WO. The deposition of potassium and phosphate with glucogen in rat livers. J Biol Chem 1939; 128: 297.CrossRefGoogle Scholar
32Wohlfart, B. A simple model for demonstration of ST-changes in ECG. Eur Heart J 1987; 8: 409–16.CrossRefGoogle Scholar
33Dawes, GS, Mott, JC, Shelley, HJ. The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol 1959; 146: 516–38.Google Scholar
34Rosen, KG, Isaksson, O. Alterations in fetal heart rate and ECG correlated to glycogen, creatinine phosphate and ATP levels during graded hypoxia. Biol Neonate 1976; 30: 1724.Google Scholar
35Hokegard, KH, Eriksson, BO, Kjellmer, I, Magno, R, Rosen, KG. Myocardial metabolism in relation to electrocardiographic changes and cardiac function during graded hypoxia in the fetal lamb. Acta Physiol Scand 1981; 113: 17.CrossRefGoogle ScholarPubMed
36Rosén, KG, Dagbjartsson, A, Henriksson, B-Å, Lagercrantz, H, Kjellmer, I. The relationship between circulating catecholamines and ST-waveform in the fetal lamb electrocardiogram during hypoxia. Am J Obstet Gynecol 1984; 149: 190–95.Google Scholar
37Rosen, KG. Intrapartum fetal monitoring and fetal ECG-time for a change. Arch Perinat Med 2001; 7: 712.Google Scholar
38Yli, BM, Källén, K, Stray-Pedersen, B, Amer-Wåhlin, I. Intrapartum fetal ECG and diabetes. J Matern Fetal Neonatal Med 2008; 21: 231–38.CrossRefGoogle ScholarPubMed
39Welin, AK, Blad, S, Hagberg, H, Rosen, KG, Kjellmer, I, Mallard, C. Electrocardiographic changes following umbilical cord occlusion in the midgestation fetal sheep. Acta Obstet Gynecol Scand 2005; 84: 122–28.CrossRefGoogle ScholarPubMed
40Blad, S, Welin, AK, Kjellmer, I, Rosén, KG, Mallard, C. ECG and Heart Rate Variability Changes in Preterm and Near-Term Fetal Lamb Following LPS Exposure. Reprod Sci 2008 May 2. [Epub ahead of print].Google Scholar
41Westgate, J, Harris, M, Curnow, JSH, Greene, KR. Plymouth randomised trial of cardiotocogram only versus ST waveform plus cardiotocogram for intrapartum monitoring: 2,400 cases. Am J Obstet Gynecol 1993; 169: 1151–160.Google Scholar
42Amer-Wahlin, I, Hellsten, C, Norén, H, Hagberg, H, Herbst, A, Kjellmer, I et al. Intrapartum fetal monitoring: Cardiotocography versus cardiotocography plus ST analysis of the fetal ECG. A Swedish randomized controlled trial. Lancet 2001; 358: 534–38.Google Scholar
43Amer-Wåhlin, I, Källen, K, Herbst, A, Rydhstroem, H, Sundström, A-K, Marsal, K. Implementation of new medical techniques: Experience from the Swedish randomized controlled trial on fetal ECG during labor. J Mat Fetal Neonatal Med 2005; 18: 93100.Google Scholar
44Norén, H, Amer-Wåhlin, I, Hagberg, H, Herbst, A, Kjellmer, I, Marşál, K, Olofsson, P, Rosén, KG et al. Fetal electrocardiography in labour and neonatal outcome: data from the Swedish randomized controlled trial on intrapartum fetal monitoring. Am J Obstet Gynecol 2003; 188: 183–92.Google Scholar
45Low, JA. Intrapartum fetal asphyxia: Definition, diagnosis, and classification. Am J Obstet Gynecol 1997; 176: 957–59.CrossRefGoogle ScholarPubMed
46Ojala, K, Vaarasmaki, M, Makikallio, K, Valkama, M, Tekay, A. A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography–a randomised controlled study. BJOG 2006; 113: 419–23.Google Scholar
47Amer-Wåhlin, I, Rosén, KG. A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography-assessment of outcome. BJOG 2006; 113: 1339–340.Google Scholar
48Neilson, JP. Fetal electrocardiogram (ECG) for fetal monitoring during labour (Cochrane Review). In: The Cochrane Library, Issue 3, 2006. Oxford.Google Scholar
49Ringer, SA. Quality improvement research: can it even provide answers lacking in multicenter randomized trials?. Acta Pædiatrica 2008; 97: 706707.Google Scholar
50Norén, H, Blad, S, Carlsson, A, Flisberg, A, Gustavsson, A, Lilja, H et al. STAN in clinical practice – the outcome of 2 years of regular use in the city of Gothenburg. Am J Obstet Gynecol 2006; 195: 715.Google Scholar
51Welin, A-K, Norén, H, Odeback, A, Andersson, M, Andersson, G, Rosén, KG. STAN a clinical audit – the outcome of 2 years of regular use in the city of Varberg, Sweden. Acta Obstet Gynecol Scand 2007; 86: 827–32.Google Scholar
52Norén, H, Carlsson, A. Assessment of perinatal outcome – analysis of 7 years of STAN usage in normal pregnancies. Presented at the Nordic Congress Obst Gynaec, Reykjavik, Iceland June 2008.Google Scholar
53Devoe, LD, Ross, M, Wilde, C, Beal, M, Lysikewicz, A, Maier, J et al. United States multicenter clinical usage study of the STAN 21 electronic fetal monitoring system. Am J Obstet Gynecol 2006; 195: 729–34.Google Scholar
54Ross, MG, Devoe, LD, Rosen, KG. ST-segment analysis of the fetal electrocardiogram improves fetal heart rate tracing interpretation and clinical decision making. J Matern Fetal Neonatal Med 2004; 15: 181–85.CrossRefGoogle ScholarPubMed
55Westgate, J, Greene, KR. How well is fetal blood sampling used in clinical practice? Br J Obstet Gynaecol 1994; 101: 250–51.CrossRefGoogle ScholarPubMed
56Luttkus, AK, Norén, H, Stupin, JH, Blad, S, Arulkumaran, S, Erkkola, R et al. Fetal scalp pH and ST analysis of the fetal ECG as an adjunct to CTG – A multi-centre, observational study. J Perinat Med 2004; 32: 486–94.Google Scholar
57Norén, H, Luttkus, AK, Stupin, J, Blad, S, Arulkumaran, S, Erkkola, R et al. Fetal scalp pH and ST analysis of the fetal ECG as an adjunct to CTG to predict fetal acidosis in labour. J Perinat Med 2007; 35: 408–14.Google Scholar
58Kwee, A, Van Der Hoorn-van den Beld, CW, Veerman, J, Dekkers, AH, Visser, GH. STAN S21 fetal heart monitor for fetal surveillance during labour: an observational study in 637 patients. J Matern Fetal Neonatal Med 2004; 15: 400407.Google Scholar
59Massoud, M, Giannesi, A, Amabile, N, Manevy, M, Geron, G, Gaucherand, P. Fetal electrocardiotocography in labour and neonatal outcome: an observational study in 1889 patients in the French center of Edouard Herriot, Lyon. J Matern Fetal Neonatal Med 2007; 20: 819–24.CrossRefGoogle ScholarPubMed
60Doria, V, Papageorghiou, AT, Gustafsson, A, Ugwumadu, A, Farrer, K, Arulkumaran, S. Review of the first 1502 cases of ECG-ST waveform analysis during labour in a teaching hospital. BJOG 2007; 114: 1202–207.Google Scholar
61Timonen, S. ST analysis and prevention of hypoxia – the Turku experience. Presented at the Nordic Congress Obst Gynaec, Reykjavik, Iceland June 2008.Google Scholar
62Westerhuis, ME, Kwee, A, van Ginkel, AA, Drogtrop, AP, Gyselaers, WJ, Visser, GH. Limitations of ST analysis in clinical practice: three cases of intrapartum metabolic acidosis. BJOG 2007; 114: 1194–201.Google Scholar
63Ugwumadu, A. Limitations of ST analysis in clinical practice: three cases of intrapartum metabolic acidosis. BJOG 2008; 115: 669–70.Google Scholar
64Poddar, A. Limitations of ST analysis in clinical practice: three cases of intrapartum metabolic acidosis. BJOG 2008; 115: 670–71.Google Scholar
65Gyselaers, W, Indrato, R, Westerhuis, M, Visser, G, Rosen, K. STAN-recorded intrapartum loss of beat-to-beat variation associated with prolonged QT-interval: indicative for fetal hypocalcemia? J Matern Fetal Neonatal Med 2007; 20: 6973.Google Scholar
66Rosén, KG, Blad, S, Larsson, D, Norén, H, Outram, N. Assessment of the fetal bioprofile during labour by fetal ECG analysis. Expert Rev Obstet Gynecol. 2007: 2: 609620.Google Scholar
67Eklind, S, Mallard, C, Leverin, AL, Gilland, E, Blomgren, K, Mattsby-Baltzer, I et al. Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001; 13: 1101–106.CrossRefGoogle ScholarPubMed