Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T15:47:28.071Z Has data issue: false hasContentIssue false

Fetal membranes structure and prelabour rupture

Published online by Cambridge University Press:  15 January 2010

TM Malak
Affiliation:
Consultant Obstetrician and Gynaecologist, General Hospital, Eastbourne, East Sussex BN21 2UD.
SC Bell
Affiliation:
Reader in Reproductive Biology, Department of Obstetrics and Gynaecology, University of Leicester, Leicester Royal Infirmary, Leicester LE2 7LX.

Extract

In most pregnancies labour begins at term in the presence of intact fetal membranes. Without intervention the membranes usually spontaneously rupture near the end of the first stage of labour. In 10% of pregnancies that deliver at term the fetal membranes fail to maintain their structural integrity and this results in their “prelabour rupture”, defined as spontaneous rupture of membranes at least one hour before the onset of labour. In 95–98% of these cases at term, labour is precipitated within 48 hours. Although preterm birth, defined as birth prior to 37 completed weeks of pregnancy, occurs in only 7–8% of all pregnancies, 40–60% of these deliveries are preceded by prelabour rupture of the fetal membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alger, LS, Pupkin, MJ. Etiology of preterm premature rupture of the membranes. Clin Obstet Gynecol 1986; 29: 758–70.CrossRefGoogle ScholarPubMed
2Egan, D, O'Herlihy, C. Expectant management of spontaneous rupture of membranes at term. J Obstet Gynaecol 1988; 8: 243–47.CrossRefGoogle Scholar
3Keirse, MJ, Ohlsson, A, Treffers, P, Kannái, HH. Prelabour rupture of the membranes at preterm. In: Chalmers, I, Enkin, M, Keirse, MJ ed, Effective care in pregnancy and childbirth. Oxford: Oxford University Press, 1989: 666–93.Google Scholar
4Yan, JS, Yin, CS. No decline in preterm birth rate over three decades. Int J Gynaecol Obstet 1991, 34: 15.CrossRefGoogle ScholarPubMed
5Morrison, JC. Preterm birth: a puzzle worth solving. Obstet Gynecol 1990; 76: 512.Google ScholarPubMed
6Gibbs, RS, Romero, R, Hillier, SL, Eschenback, DA, Sweet, RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol 1992; 166: 1515–28.CrossRefGoogle ScholarPubMed
7Harger, JH, Hsing, AW, Tuomala, RE, Gibbs, RS et al. Risk factors for preterm premature rupture of fetal membranes: a multicenter case-control study. Am J Obstet Gynecol 1990; 163: 130–37.CrossRefGoogle ScholarPubMed
8Malak, T, Bell, S. The structural characteristics of spontaneously ruptured fetal membranes: their relationship to membrane rupture and parturition. Contemp Rev Obstet Gynaecol 1993; 5: 117–23.Google Scholar
9Malak, T, Bell, S. Structural characteristics of term human fetal membranes (amniochorion and decidua): a novel zone of morphological alteration within the rupture site. Br J Obstet Gynaecol 1994; 101: 375–86.CrossRefGoogle ScholarPubMed
10Lavery, JP, Miller, CE, Johns, P. Effect of meconium on the strength of chorioamniotic membranes. Obstet Gynecol 1980; 56: 711–19.Google ScholarPubMed
11Parry-Jones, E, Priya, S. A study of the elasticity and tension of fetal membranes and of the relation of the area of the gestational sac to the area of the uterine cavity. Br J Obstet Gynaecol 1976; 83: 205–12.CrossRefGoogle Scholar
12Malak, T, Mulholland, G, Bell, S. Structural and morphometric characteristics of the fetal membranes in preterm birth. J Repród Fértil 1993; 12: 48.Google Scholar
13Malak, T, Mullholland, G, Bell, S. Morphometric characteristics of the decidua, cytotrophoblast and connective tissue of the prelabour ruptured fetal membranes. Ann NY Acad Sci 1994; 734 430–33.CrossRefGoogle ScholarPubMed
14Malak, TBell, S. Structural changes in preterm prelabour ruptured fetal membranes in comparison to term normal and prelabour ruptured membranes. 27th British Congress of Obstetrics and Gynaecology, Dublin, Ireland, 1995: 47.Google Scholar
15Hoyes, AD. Ultrastructure of the mesenchymal layers of the human amnion in early pregnancy. Am J Obstet Gynecol 1970; 106: 557–66.CrossRefGoogle ScholarPubMed
16Oxlund, H, Andreassen, TT. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 1980; 131: 611–19.Google ScholarPubMed
17Teti, A. Regulation of cellular functions by extracellular matrix. J Am Soc Nephrol 1992; 8387.CrossRefGoogle ScholarPubMed
18Malak, T, Ockleford, C, Bell, S, Dalgleish, R, Bright, N, MacVicar, J. Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 1993; 14: 385406.CrossRefGoogle Scholar
19Ockleford, C, Bright, N, Hubbard, A, D'Lacey, C, Smith, J, Gardiner, L et al. Micro-trabeculae, macro-plaques or mini-basement membranes in human term fetal membranes? Philos Trans R Soc LondBBiol Sci 1993; 342: 121–36.Google ScholarPubMed
20Ockleford, C, Malak, T, Hubbard, A, Bracken, K, Burton, SA, Bright, N et al. Confocal and conventional immunofluorescence and ultrastructural localization of intracellular strength giving components of human fetal membranes. J Anal 1993; 183: 483505.Google Scholar
21Bell, S, Malak, T. Formation of the chorio-decidual interface of human fetal membranes: is it an analogous to anchoring villi development in the placenta? Ann N Y Acad Sci 1994; 734: 166–68.CrossRefGoogle ScholarPubMed
22Malak, T, Bell, S. Distribution of fibrillin-containing microfibrils and elastin in human fetal membranes and decidua: a novel molecular basis for membrane elasticity. Am J Obstet Gynecol 1994; 171: 195205.CrossRefGoogle ScholarPubMed
23Malak, T, Bell, S. Differential expression of integrin subunits in human fetal membranes (Amniochorion and Decidua): role in cell-matrix and cell-cell interactions. J Repród Fértil 1994; 102: 269–76.CrossRefGoogle Scholar
24Divers, MJ, Bulmer, JN, Miller, D, Lilford, RJ. Beta 1 integrins in third trimester human placentae: no differential expression in pathological pregnancy. Placenta 1995; 16: 245–60.CrossRefGoogle ScholarPubMed
25Schmidt, W. The amniotic fluid compartment: the fetal habitat. In: Beck, F, Hild, W, Kriz, W, Pauly, J, Sano, YSchiebler, T eds, Advances in anatomy, embryology and cell biology. Berlin: Springer-Verlag, 1992: Vol 127.Google Scholar
26Aplin, J, Campbell, S, Allen, T. The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition. J Cell Sci 1985; 79: 119–36.Google ScholarPubMed
27Bourne, GL. In The human amnion and chorion. London: Lloyds, 1962.Google ScholarPubMed
28Wang, T, Schneider, J. Location of anions in human amnions: evidence for a non-placental route for the transfer of proteins into amniotic fluid. Arch Gynecol 1982; 231: 269–77.CrossRefGoogle ScholarPubMed
29Georgatos, S, Blobel, G. Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for a vectorial assembly of intermediate filaments. J Cell Biol 1987; 105: 105–15.CrossRefGoogle ScholarPubMed
30Yeh, IT, O'Connor, DM, Kurman, RJ. Vacuolated cytotrophoblast: a subpopulation of trophoblast in the chorion laeve. Placenta 1989; 10: 429–38.CrossRefGoogle ScholarPubMed
31Bulmer, JN, Johnson, PM. Antigen expression by trophoblast populations in the human placenta and their possible immunobiological relevance. Placenta 1985; 6: 127–40.CrossRefGoogle ScholarPubMed
32Wang, T, Schneider, J. Fine structure of human chorionic membrane: ultrastructural and histological examination. Arch Gynecol 1983; 233: 187–98.CrossRefGoogle Scholar
33Stepp, MA, Spurr-Michaud, S, Tisdale, A, Elwell, J, Gipson, IK. α64 integrin heterodimer is a component of hemidesmosomes. Proc Nat Acad Sci USA 1990; 87: 8970–74.CrossRefGoogle Scholar
34Hieda, Y, Nishizawa, Y, Uematsu, J, Owaribe, J. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass compontent of isolated hemidesmosomes. J Cell Biol 1992; 116: 1497–506.CrossRefGoogle Scholar
35Klima, G, Schmidt, W. Immunohistochemical studies of the nature of connective tissue in fetal membranes. Acta Histochemica Jena 1998; 84: 195203.CrossRefGoogle Scholar
36Sanes, JR, Engvall, E, Butkowski, R, Hunter, DD. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol 1990; 111: 1685–99.CrossRefGoogle ScholarPubMed
37Engvall, E, Earwicker, D, Haaparanta, T, Ruoslahti, E, Sanes, JR. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul 1990; 1: 731–40.CrossRefGoogle ScholarPubMed
38Ehrig, K, Leivo, I, Argraves, WS, Ruoslahti, E, Engvall, E. Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proc Nat Acad Sci USA 1990; 87: 3264–68.CrossRefGoogle ScholarPubMed
39Feinberg, F, Kliman, H, Lockwood, C. Is oncofetal fibronectin a trophoblast glue for human implantation. Am J Pathol 1991; 138: 537–43.Google ScholarPubMed
40Dámsky, CH, Fitzgerald, ML, Fisher, SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest 1992; 89: 210–22.CrossRefGoogle ScholarPubMed
41Korhonen, M, Ylanne, J, Laitinen, L, Cooper, HM, Quaranta, V, Virtanen, I. Distribution of the α1−β6 integrin subunits in human developing and term placenta. Lab Invest 1991; 65: 347–56.Google Scholar
42Lockwood, CJ, Senyéi, AE, Dische, MR, Casai, D, Shah, KD, Thung, SN et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. N Engl J Med 1991; 325: 669–74.CrossRefGoogle ScholarPubMed
43Khong, T, Lane, E, Robertson, W. An immunocytochemical study of fetal cells at the maternal-placental interface using monoclonal antibodies to keratins, vimentin and desmin. Cell Tissue Res 1986; 246: 189–95.CrossRefGoogle ScholarPubMed
44Sappino, AP, Schurch, W, Gabbiani, G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 1990; 63: 144–61.Google ScholarPubMed
45Imai, K, Kanzaki, H, Fujiwara, H, Maeda, M, Ueda, M, Suginami, H et al. Expression and localization of amniopeptidase N, neutral endopeptidase and dipeptidyl peptidase IV in the human placenta and fetal membranes. Am J Obstet Gynecol 1994; 170: 1163–68.CrossRefGoogle Scholar
46Gabbiani, G, Hirschel, B, Ryan, G, Statkov, P, Majno, G. Granulation tissue as contractile organ. J Exp Med 1972; 135: 719–31.CrossRefGoogle ScholarPubMed
47Eddy, RJ, Petro, JA, Tomasek, JJ. Evidence for the nonmuscle nature of the “myofibroblast” of granulation tissue and hypertrophie scar. Am J Pathol 1988; 130: 252–60.Google Scholar
48Bulmer, J, Johnson, P. Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol 1984; 57: 393403.Google ScholarPubMed
49Sueki, H, Whitaker, D, Buchsbaum, M, Murphy, GF. Novel interactions between dermal dendrocytes and mast cells in human skin: implications for hemostasis and matrix repair. Lab Invest 1993; 69: 160–72.Google ScholarPubMed
50Trimble, CL, Gray, MH, McNutt, NS. The distribution of factor Xllla-positive cells in the human fetus and placenta. Virchows Arch A Pathol Anal Histopathol 1992; 420 513–18.CrossRefGoogle ScholarPubMed
51Oliver, A. Macrophage heterogeneity in human fetal tissue. Fetal macrophages. Clin Exp Immunol 1990; 80: 454–59.CrossRefGoogle ScholarPubMed
52Gordon, S, Keshav, S, Chung, L. Mononuclear phagocytes: tissue distribution and functional heterogeneity. Curr Opin Immunol 1988; 8: 2639.CrossRefGoogle Scholar
53Seljelid, R, Eskeland, T. The biology of macrophages: I General prinicples and properties. Eur J Haematol 1993; 51: 267–75.CrossRefGoogle Scholar
54Artal, R, Solol, R, Newman, M, Burtstein, A, Stojkov, J. The mechanical properties of prematurely and nonprematurely ruptured membranes. Am J Obstet Gynecol 1976; 125 655–59.CrossRefGoogle ScholarPubMed
55Trelstad, RL, Silver, FH. Matrix assembly. In: Hay, ED ed, Cell biology of extracellular matrix. New York: Plenum, 1981: 179215.CrossRefGoogle Scholar
56Greenlee, TK, Ross, R, Hartman, JL. The fine structure of elastic fibers. J Cell Biol 1966; 30: 5965.CrossRefGoogle ScholarPubMed
57Kanayama, N, Terao, T, Kawashima, Y, Horiuchi, K, Fujimoto, D. Collagen types in normal and prematurely ruptured amniotic membranes. Am J Obstet Gynecol 1985; 153: 899903.CrossRefGoogle ScholarPubMed
58Keene, DR, Maddox, BK, Kuo, HJ, Sakai, LY, Glanville, RW. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 1991; 39: 441–49.CrossRefGoogle ScholarPubMed
59Fleischmajer, R, Jacobs, L, Schwartz, E, Sakai, LY. Extracellular microfibrils are increased in localized and systemic scleroderma skin. Lab Invest 1991; 64: 791–98.Google ScholarPubMed
60Yamada, K. Cell surface interactions with extracellular materials. Ann Rev Biochem 1983; 52: 761–99.CrossRefGoogle ScholarPubMed
61Kaiser, HW, Neww, W, Jungblut, I, Briggaman, RA, Kreysel, HW, O'Keefe, EJ. Adherens junctions: demonstration in human epidermis. J Invest Dermatol 1993; 100: 180–85.CrossRefGoogle ScholarPubMed
62Modesti, A, Kalebic, T, Scarpa, S, Togo, S, Grotendorst, G, Liotta, LA et al. Type V collagen in human amnion is a 12nm fibrillar component of the pericullular interstitium. Eur J Cell Biol 1984; 35: 246–55.Google Scholar
63Keene, DR, Sakai, LY, Lunstrum, GP, Morris, NP, Burgeson, RE. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol 1987; 104: 611–21.CrossRefGoogle ScholarPubMed
64Modesti, A, Scarpa, S, D'Orazi, G, Simonelli, L, Caramia, FG. Localization of type IV and V collagene in the stroma of human amnion. Dev Ultrastruct Repród 1989; 296: 459–63.Google ScholarPubMed
65Farquhar, MG. The glomerular basement membrane: a selective macromolecular filter. In Hay, ED ed. Cell biology of extracellular matrix. New York: Plenum, 1981.Google Scholar
66Fleischmajer, R, Contard, P, Schwartz, E, MacDonald, ED, Jacobs, LD, Sakai, LY. Elastin-associated microfibrils (10 nm) in a three-dimensional fibroblast culture. J Invest Dermatol; 97: 638–43.CrossRefGoogle Scholar
67Sakai, LY, Keene, DR, Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 1986 103: 2499–509.CrossRefGoogle ScholarPubMed
68Lavery, JP, Miller, CE. Deformation and creep in the human chorioamniotic sac. Am J Obstet Gynecol 1979; 134: 366–75.CrossRefGoogle ScholarPubMed
69Fawthrop, RK, Ockleford, CD. Cryofracture of human term amniochorion. Cell Tissue Res 1994; 277: 315–23.CrossRefGoogle ScholarPubMed
70Whitby, DJ, Ferguson, MW. The extracellular matrix of lip wounds in fetal neonatal and adult mice. Development 1991; 112: 651–68.CrossRefGoogle ScholarPubMed
71Castellucci, M, Çlassen-Linke, I, Muhlhauser, J, Kaufmann, P, Zardi, L, Chiquet-Ehrismann, R. The human placenta: a model for tenascin expression. Histochemistry 1991; 95: 449–58.CrossRefGoogle Scholar
72Mackie, E, Halfter, W, Liverani, D. Induction of tenascin in healing wounds. J Cell Biol 1988; 107: 2757–67.CrossRefGoogle ScholarPubMed
73Oxlund, H, Helmig, R, Halaburt, JT, Uldberg, N. Biomechanical analysis of human chorioamniotic membranes. Eur J Obstet Gynecol Repród Biol 1990; 34: 247–55.CrossRefGoogle ScholarPubMed
74Halaburt, JT, Uldbjerg, N, Helmig, R, Ohlsson, K. The concentration of collagen and the collagenolytic activity in the amnion and the chorion. Eur J Obstet Gynecol Repród Biol 1989; 31: 7582.CrossRefGoogle ScholarPubMed
75Bou-Resli, MN, Al-Zaid, NS, Ibrahim, MEA. Full-term and prematurely ruptured fetal membranes. An ultrastructural study. Cell Tissue Res 1981; 220: 263–78.CrossRefGoogle ScholarPubMed
76Al-Zaid, NS, Bou-Resli, MN, Goldspink, G. Bursting pressure and collagen content of fetal membranes and their relation to premature rupture of the membranes. Br J Obstet Gynaecol 1980; 87: 227–29.CrossRefGoogle ScholarPubMed
77Al-Zaid, NS, Gumaa, KA, Bou-Resli, MN, Ibrahim, MEA. Site variability in the solubility of collagen of human fetal membranes. J Repród Fértil 1986; 77: 665–68.CrossRefGoogle ScholarPubMed
78Toppozada, M, Saliam, N, Gaafar, A, El-Kashlan, K. Role repeated stretching in the mechanism of timely rupture of the membranes. Am J Obstet Gynecol 1970; 108: 243–49.CrossRefGoogle ScholarPubMed
79Yoshida, Y, Manabe, Y. Different characteristics of amniotic and cervical collagenous tissue during pregnancy and delivery: a morphologic study. Am J Obstet Gynecol 1990; 162: 190–93.CrossRefGoogle ScholarPubMed
80Manabe, Y, Yoshida, Y. Morphologic study of changes of collagenous tissue in the amnion and cervix during prostaglandin-induced abortion and delivery. Am J Obstet Gynecol 1990; 163: 5256.CrossRefGoogle ScholarPubMed
81Lockwood, CJ, Wein, R, Lapinksi, R, Casal, D, Berkowitz, G, Alvarez, M et al. The presence of cervical and vaginal fetal fibronectin predicts preterm delivery in an inner-city obstetric population. Am J Obstet Gynecol 1993; 169: 798804.CrossRefGoogle Scholar
82Olson, DM, Mijovic, JE, Sadowsky, DW. Control of human parturition. Sémin Perinatol 1995; 19: 5263.CrossRefGoogle ScholarPubMed
83Challis, J, Lye, S. Parturition. In: Knobil, E, Neill, J eds. The physiology of reproduction. Vol 2 New York: Raven Press, 1994.Google Scholar
84Leppert, P. Cervical softening, effacement and dilation: a complex biochemical cascade. J Mat Fet Med 1992; 1: 213–23.Google Scholar
85Minamoto, T, Arai, K, Hirakawa, S, Nagai, Y. Immunohistochemical studies on collagen types in the uterine cervix in pregnant and nonpregnant states. Am J Obstet Gynecol 1987; 156: 138–44.CrossRefGoogle ScholarPubMed
86Manabe, Y, Yoshida, Y. Collagenolysis in human vaginal tissue during pregnancy and delivery: a light and electron microscopic study. Am J Obstet Gynecol 1986; 155: 1060–66.CrossRefGoogle ScholarPubMed
87Barabas, AP. Ehlers-Danlos syndrome: associated with prematurity and premature rupture of fetal membranes; possible increase in incidence. Br Med J 1966; 2: 682–87.CrossRefGoogle Scholar
88Donald, I. In: Practical obstetrics problems London: Lloyd-Luke, 1966.Google Scholar
89Kerr, JM, Johnstone, R, Philips, M. In: Historical review of British obstetrics and gynaecology 180–1950 London: E & S Livingston, 1954.Google Scholar
90Germain, AM, Smith, J, Casey, ML, MacDonald, PC. Human fetal membrane contribution to the prevention of parturition: uterotonin degradation. J Clin Endocrinol Metab 1994; 78: 463–70.Google Scholar
91Sangha, RK, Walton, JC, Ensor, CM, Tai, HH, Challis, JR. Immunohistochemical localization, messenger ribonucleic acid abundance and activity of 15-hydroxyprostaglandin dehydrogenase in placenta and fetal membranes during term and preterm labor. J Clin Endocrinol Metab 1994; 78: 982–89.Google ScholarPubMed
92Romero, R, Mazor, M, Munoz, H, Gomez, R, Galasso, M, Sherer, D. The preterm labour syndrome. Ann N Y Acad Sci 1994; 734: 414–29.CrossRefGoogle ScholarPubMed