Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T07:17:50.021Z Has data issue: false hasContentIssue false

CURRENT ASPECTS OF FETAL CARDIOVASCULAR FUNCTION

Published online by Cambridge University Press:  01 February 2008

HIKORO MATSUI
Affiliation:
Perinatal Cardiology, Faculty of Medicine, Imperial College, London
HELENA GARDINER*
Affiliation:
Perinatal Cardiology, Faculty of Medicine, Imperial College, London
*
Dr Helena M Gardiner, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, Queen Charlotte's and Chelsea Hospital, Du Cane Road, London, W12 ONN, United Kingdom[email protected]

Extract

Investigation of fetal cardiac function remains a challenging task. Although the response of the heart to changes in load is well-known in animal models and the adult human, the developmental changes in fetal cardiac response remain poorly characterised. However, quantitative evaluation of cardiovascular function is important to predict the clinical course and to manage the fetus optimally. To date, the routine evaluation of fetal cardio vascular function has relied largely on Doppler echocardiography which enables an estimate of haemodynamics; newer modalities such as measurement of myocardial velocities are employed less routinely. Fetal magnetic resonance imaging still lacks the resolution necessary to contribute significantly to morphological or functional assessment of the fetal cardiovascular system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garrett, W. J, Robinson, D. E.Fetal heart size measured in vivo by ultrasound. Pediatrics 1970; 46: 2527.Google Scholar
2Murata, Y, Takemura, H, Kurachi, K. Observation of fetal cardiac motion by M-mode ultrasonic cardiography. Am J Obstet Gynecol 1971; 111: 287–94.Google Scholar
3Winsberg, F. Echocardiography of the fetal and newborn heart. Invest Radiol 1972; 7: 152–58.Google Scholar
4DeVore, GR, Falkensammer, P, Sklansky, MS, Platt, LD. Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet Gynecol 2003; 22: 380–87.Google Scholar
5Wakai, RT, Strasburger, JF, Li, Z, Deal, BJ, Gotteiner, NL. Magnetocardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia. Circulation 2003; 107: 307–12.Google Scholar
6Pasquini, L, Seale, AN, Belmar, C, Oseku-Afful, S, Thomas, MJ, Taylor, MJ, et al. PR interval: a comparison of electrical and mechanical methods in the fetus. Early Hum Dev 2007; 83: 231–37.Google Scholar
7Cook, AC. The spectrum of fetal cardiac malformations. Cardiol Young 2001; 11: 97110.CrossRefGoogle ScholarPubMed
8Aikawa, E, Whittaker, P, Farber, M, Mendelson, K, Padera, RF, Aikawa, M, et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 2006; 113: 1344–52.CrossRefGoogle ScholarPubMed
9Mielke, G, Benda, N. Cardiac output and central distribution of blood flow in the human fetus. Circulation 2001; 103: 1662–668.Google Scholar
10Rasanen, J, Wood, DC, Weiner, S, Ludomirski, A, Huhta, JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation 1996; 94: 1068–73.Google Scholar
11Edelstone, DI, Rudolph, AM. Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs. Am J Physiol 1979; 237: H7249.Google Scholar
12Loquet, P, Broughton Pipkin, F, Symonds, EM, Rubin, PC. Blood velocity waveforms and placental vascular formation. Lancet 1988; 2: 1252–253.CrossRefGoogle ScholarPubMed
13Kiserud, T, Ebbing, C, Kessler, J, Rasmussen, S. Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet Gynecol 2006; 28: 126–36.CrossRefGoogle Scholar
14Talbert, D, Sebire, NJ. The dynamic placenta: I. Hypothetical model of a placental mechanism matching local fetal blood flow to local intervillus oxygen delivery. Med Hypotheses 2004; 62: 511–19.CrossRefGoogle ScholarPubMed
15Talbert, DG, Bajoria, R, Sepulveda, W, Bower, S, Fisk, NM. Hydrostatic and osmotic pressure gradients produce manifestations of fetofetal transfusion syndrome in a computerized model of monochorial twin pregnancy. Am J Obstet Gynecol 1996; 174: 598608.CrossRefGoogle Scholar
16Van Den Wijngaard, JP, Westerhof, BE, Faber, DJ, Ramsay, MM, Westerhof, N, van Gemert, MJ. Abnormal arterial flows by a distributed model of the fetal circulation. Am J Physiol Regul Integr Comp Physiol 2006; 291: R122233.CrossRefGoogle ScholarPubMed
17deAlmeida, A, McQuinn, T, Sedmera, D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 2007; 100: 1363–70.CrossRefGoogle ScholarPubMed
18Sanchez-Quintana, D, Garcia-Martinez, V, Climent, V, Hurle, JM. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec 1995; 243: 483–95.CrossRefGoogle ScholarPubMed
19Spencer, TN, Botting, KJ, Morrison, JL, Posterino, GS. Contractile and Ca2+-handling properties of the right ventricular papillary muscle in the late-gestation sheep fetus. J Appl Physiol 2006; 101: 728–33.CrossRefGoogle ScholarPubMed
20Anderson, DF, Bissonnette, JM, Faber, JJ, Thornburg, KL. Central shunt flows and pressures in the mature fetal lamb. Am J Physiol 1981; 241: H606.Google Scholar
21Johnson, P, Maxwell, DJ, Tynan, MJ, Allan, LD. Intracardiac pressures in the human fetus. Heart 2000; 84: 5963.CrossRefGoogle ScholarPubMed
22Suga, H, Sagawa, K, Shoukas, AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973; 32: 314–22.CrossRefGoogle ScholarPubMed
23Khalafbeigui, F, Suga, H, Sagawa, K. Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am J Physiol 1979; 237: H56669.Google ScholarPubMed
24Berning, RA, Klautz, RJ, Teitel, DF. Perinatal left ventricular performance in fetal sheep: interaction between oxygen ventilation and contractility. Pediatr Res 1997; 41: 5764.CrossRefGoogle ScholarPubMed
25Sunagawa, K, Maughan, WL, Sagawa, K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985; 56: 586–95.CrossRefGoogle ScholarPubMed
26Sunagawa, K, Sugimachi, M, Todaka, K, Kobota, T, Hayashida, K, Itaya, R, et al. Optimal coupling of the left ventricle with the arterial system. Basic Res Cardiol 1993; 88 Suppl 2: 7590.Google Scholar
27RossJ, Jr. J, Jr.Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 1976; 18: 255–64.CrossRefGoogle ScholarPubMed
28Tworetzky, W, Wilkins-Haug, L, Jennings, RW, Van Der Velde, ME, Marshall, AC, Marx, GR, et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 2004; 110: 2125–31.CrossRefGoogle ScholarPubMed
29Campbell, S, Diaz-Recasens, J, Griffin, DR, Cohen-Overbeek, TE, Pearce, JM, Willson, K, et al. New Doppler technique for assessing uteroplacental blood flow. Lancet. 1983; 1: 675–77.CrossRefGoogle ScholarPubMed
30Laurin, J, Lingman, G, Marsal, K, Persson, PH. Fetal blood flow in pregnancies complicated by intrauterine growth retardation. Obstet Gynecol 1987; 69: 895902.Google Scholar
31Allan, LD, Joseph, MC, Boyd, EG, Campbell, S, Tynan, M. M-mode echocardiography in the developing human fetus. Br Heart J 1982; 47: 573–83.CrossRefGoogle ScholarPubMed
32Allan, LD, Chita, SK, Al-Ghazali, W, Crawford, DC, Tynan, M. Doppler echocardiographic evaluation of the normal human fetal heart. Br Heart J 1987; 57: 528–33.CrossRefGoogle ScholarPubMed
33Matsui, H, Gardiner, H. Fetal intervention for cardiac disease: The cutting edge of perinatal care. Semin Fetal Neonatal Med 2007; 12: 482–89.CrossRefGoogle ScholarPubMed
34Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, K. Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 1995; 91: 129–38.Google Scholar
35Rizzo, G, Arduini, D. Fetal cardiac function in intrauterine growth retardation. Am J Obstet Gynecol 1991; 165: 876–82.CrossRefGoogle ScholarPubMed
36Jauniaux, E, Jurkovic, D, Campbell, S. In vivo investigations of the anatomy and the physiology of early human placental circulations. Ultrasound Obstet Gynecol 1991; 1: 435–45.CrossRefGoogle ScholarPubMed
37Makikallio, K, Jouppila, P, Rasanen, J. Human fetal cardiac function during the first trimester of pregnancy. Heart. 2005; 91: 334–38.CrossRefGoogle ScholarPubMed
38Kenny, JF, Plappert, T, Doubilet, P, Saltzman, DH, Cartier, M, Zollars, L, et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation 1986; 74: 1208–16.Google Scholar
39Reed, KL, Meijboom, EJ, Sahn, DJ, Scagnelli, SA, Valdes-Cruz, LM, Shenker, L. Cardiac Doppler flow velocities in human fetuses. Circulation 1986; 73: 4146.CrossRefGoogle ScholarPubMed
40van Splunder, P, Stijnen, T, Wladimiroff, JW. Fetal atrioventricular flow-velocity waveforms and their relation to arterial and venous flow-velocity waveforms at 8 to 20 weeks of gestation. Circulation 1996; 94: 1372–78.CrossRefGoogle ScholarPubMed
41Better, DJ, Kaufman, S, Allan, LD. The normal pattern of pulmonary venous flow on pulsed Doppler examination of the human fetus. J Am Soc Echocardiogr 1996; 9: 281–85.Google Scholar
42Michelfelder, E, Gomez, C, Border, W, Gottliebson, W, Franklin, C. Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle. Circulation 2005; 112: 2974–979.Google Scholar
43Better, DJ, Apfel, HD, Zidere, V, Allan, LD. Pattern of pulmonary venous blood flow in the hypoplastic left heart syndrome in the fetus. Heart 1999; 81: 646–49.Google Scholar
44Wilson, AD, Rao, PS, Aeschlimann, S. Normal fetal foramen flap and transatrial Doppler velocity pattern. J Am Soc Echocardiogr 1990; 3: 491–94.Google Scholar
45Mielke, G, Benda, N. Blood flow velocity waveforms of the fetal pulmonary artery and the ductus arteriosus: reference ranges from 13 weeks to term. Ultrasound Obstet Gynecol 2000; 15: 213–18.Google Scholar
46Huhta, JC, Moise, KJ, Fisher, DJ, Sharif, DS, Wasserstrum, N, Martin, C. Detection and quantitation of constriction of the fetal ductus arteriosus by Doppler echocardiography. Circulation 1987; 75: 406–12.Google Scholar
47Gardiner, HM, Belmar, C, Tulzer, G, Barlow, A, Pasquini, L, Carvalho, JS, et al. Morphological and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol 2008; (in print).Google Scholar
48Kiserud, T, Eik-Nes, SH, Blaas, HG, Hellevik, LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet 1991; 338: 1412–414.Google Scholar
49Kessler, J, Rasmussen, S, Hanson, M, Kiserud, T. Longitudinal reference ranges for ductus venosus flow velocities and waveform indices. Ultrasound Obstet Gynecol 2006; 28: 890–98.Google Scholar
50Bianco, K, Small, M, Julien, S, Kershaw, T, Michon, M, Copel, J. Second-trimester ductus venosus measurement and adverse perinatal outcome in fetuses with congenital heart disease. J Ultrasound Med 2006; 25: 979–82.Google Scholar
51Berg, C, Kamil, D, Geipel, A, Kohl, T, Knopfle, G, Hansmann, M, et al. Absence of ductus venosus-importance of umbilical venous drainage site. Ultrasound Obstet Gynecol 2006; 28: 275–81.Google Scholar
52Hofstaetter, C, Dubiel, M, Gudmundsson, S. Two types of umbilical venous pulsations and outcome of high-risk pregnancy. Early Hum Dev 2001; 61: 111–17.Google Scholar
53Reed, KL, Anderson, CF. Changes in umbilical venous velocities with physiologic perturbations. Am J Obstet Gynecol 2000; 182: 835–38; discussion 738–40.CrossRefGoogle ScholarPubMed
54Merce, LT, Barco, MJ, Bau, S. Color Doppler sonographic assessment of placental circulation in the first trimester of normal pregnancy. J Ultrasound Med 1996; 15: 135–42.CrossRefGoogle ScholarPubMed
55Wladimiroff, JW, Huisman, TW, Stewart, PA. Intracerebral, aortic, and umbilical artery flow velocity waveforms in the late-first-trimester fetus. Am J Obstet Gynecol 1992; 166: 4649.CrossRefGoogle ScholarPubMed
56Paladini, D, Chita, SK, Allan, LD. Prenatal measurement of cardiothoracic ratio in evaluation of heart disease. Arch Dis Child 1990; 65: 2023.CrossRefGoogle ScholarPubMed
57Gembruch, U, Shi, C, Smrcek, JM. Biometry of the fetal heart between 10 and 17 weeks of gestation. Fetal Diagn Ther 2000; 15: 2031.CrossRefGoogle ScholarPubMed
58Chang, FM, Hsu, KF, Ko, HC, Yao, BL, Chang, CH, Yu, CH, et al. Fetal heart volume assessment by three-dimensional ultrasound. Ultrasound Obstet Gynecol. 1997; 9: 4248.Google Scholar
59Meyer-Wittkopf, M, Cole, A, Cooper, SG, Schmidt, S, Sholler, GF. Three-dimensional quantitative echocardiographic assessment of ventricular volume in healthy human fetuses and in fetuses with congenital heart disease. J Ultrasound Med 2001; 20: 317–27.CrossRefGoogle ScholarPubMed
60Bhat, AH, Corbett, V, Carpenter, N, Liu, N, Liu, R, Wu, A, et al. Fetal ventricular mass determination on three-dimensional echocardiography: studies in normal fetuses and validation experiments. Circulation 2004; 110: 1054–60.Google Scholar
61Schneider, C, McCrindle, BW, Carvalho, JS, Hornberger, LK, McCarthy, KP, Daubeney, PE. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol 2005; 26: 599605.Google Scholar
62Pasquini, L, Mellander, M, Seale, A, Matsui, H, Roughton, M, Ho, SY, et al. Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. Ultrasound Obstet Gynecol 2007; 29: 628–33.Google Scholar
63Goldinfeld, M, Weiner, E, Peleg, D, Shalev, E, Ben-Ami, M. Evaluation of fetal cardiac contractility by two-dimensional ultrasonography. Prenat Diagn 2004; 24: 799803.Google Scholar
64Gardiner, HM, Pasquini, L, Wolfenden, J, Barlow, A, Li, W, Kulinskaya, E, et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006; 113: 3947.CrossRefGoogle ScholarPubMed
65Harada, K, Ogawa, M, Tanaka, T. Right ventricular pre-ejection myocardial velocity and myocardial acceleration in normal fetuses assessed by Doppler tissue imaging. J Am Soc Echocardiogr 2005; 18: 370–74.Google Scholar
66Nii, M, Roman, KS, Kingdom, J, Redington, AN, Jaeggi, ET. Assessment of the evolution of normal fetal diastolic function during mid and late gestation by spectral Doppler tissue echocardiography. J Am Soc Echocardiogr 2006; 19: 1431–437.Google Scholar
67Matsui, H, Satomi, G, Yasukochi, S, Kaneko, S, Haseyama, K. Evaluation of Right Ventricular Contraction by Myocardial Strain in Children Using a Two-Dimensional Tissue Tracking Method. J Am coll Cardiol 2008; 51: 1299–308.Google Scholar
68Kanzaki, T, Chiba, Y. Evaluation of the preload condition of the fetus by inferior vena caval blood flow pattern. Fetal Diagn Ther 1990; 5: 168–74.Google Scholar
69Reed, KL, Appleton, CP, Anderson, CF, Shenker, L, Sahn, DJ. Doppler studies of vena cava flows in human fetuses. Insights into normal and abnormal cardiac physiology. Circulation 1990; 81: 498505.Google Scholar
70DeVore, GR, Horenstein, J. Ductus venosus index: a method for evaluating right ventricular preload in the second-trimester fetus. Ultrasound Obstet Gynecol 1993; 3: 338–42.Google Scholar
71Downing, GJ, Yarlagadda, AP, Maulik, D. Comparison of the pulsatility index and input impedance parameters in a model of altered hemodynamics. J Ultrasound Med 1991; 10: 317–21.Google Scholar
72Mari, G, Deter, RL, Carpenter, RL, Rahman, F, Zimmerman, R, Moise, KJ Jr., et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 2000; 342: 914.Google Scholar
73Hsieh, YY, Chang, CC, Tsai, HD, Tsai, CH. Longitudinal survey of blood flow at three different locations in the middle cerebral artery in normal fetuses. Ultrasound Obstet Gynecol 2001; 17: 125–28.CrossRefGoogle ScholarPubMed
74Gardiner, HM, Brodszki, J, Marsál, K. Ventriculo-vascular physiology of the growth restricted fetus. Ultrasound Obstet Gynecol 2001; 18: 4753.Google Scholar
75Karatza, AA, Wolfenden, JL, Taylor, MJ, Wee, L, Fisk, NM, Gardiner, HM. Influence of twin-twin transfusion syndrome on fetal cardiovascular structure and function: prospective case-control study of 136 monochorionic twin pregnancies. Heart 2002; 88: 271–77.Google Scholar
76Gardiner, HM, Taylor, MJ, Karatza, A, Vanderheyden, T, Huber, A, Greenwald, SE, et al. Twin-twin transfusion syndrome: the influence of intrauterine laser photocoagulation on arterial distensibility in childhood. Circulation 2003; 107: 1906–11.Google Scholar
77Mahieu-Caputo, D, Salomon, LJ, Le Bidois, J, Fermont, L, Brunhes, A, Jouvet, P, et al. Fetal hypertension: an insight into the pathogenesis of the twin-twin transfusion syndrome. Prenat Diagn 2003; 23: 640–45.Google Scholar
78Friedman, D, Buyon, J, Kim, M, Glickstein, JS. Fetal cardiac function assessed by Doppler myocardial performance index (Tei Index). Ultrasound Obstet Gynecol 2003; 21: 3336.Google Scholar
79Cheung, MM, Smallhorn, JF, Redington, AN, Vogel, M. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements. Eur Heart J 2004; 25: 2238–242.CrossRefGoogle ScholarPubMed
80Raboisson, MJ, Fouron, JC, Lamoureux, J., Leduc, L., Grignon, A., , Proulx F., et al. Early intertwin differences in myocardial performance during the twin-to-twin transfusion syndrome. Circulation 2004; 110: 3043–48.Google Scholar
81Allan, LD, Anderson, RH, Sullivan, ID, Campbell, S, Holt, DW, Tynan, M. Evaluation of fetal arrhythmias by echocardiography. Br Heart J 1983; 50: 240–45.Google Scholar
82Fouron, JC, Proulx, F, Miro, J, Gosselin, J. Doppler and M-mode ultrasonography to time fetal atrial and ventricular contractions. Obstet Gynecol 2000; 96: 732–36.Google ScholarPubMed
83Strasburger, JF, Huhta, JC, Carpenter, RJ Jr., Garson, A. Jr., McNamara, DG. Doppler echocardiography in the diagnosis and management of persistent fetal arrhythmias. J Am Coll Cardiol 1986; 7: 1386–391.Google Scholar
84Fouron, JC, Fournier, A, Proulx, F, Lamarche, J, Bigras, JL, Boutin, C, et al. Management of fetal tachyarrhythmia based on superior vena cava/aorta Doppler flow recordings. Heart 2003; 89: 1211–216.Google Scholar
85Carvalho, JS, Prefumo, F, Ciardelli, V, Sairam, S, Bhide, A, Shinebourne, EA. Evaluation of fetal arrhythmias from simultaneous pulsed wave Doppler in pulmonary artery and vein. Heart 2007; 93: 1448–53.Google Scholar
86Nii, M, Hamilton, RM, Fenwick, L, Kingdom, JC, Roman, KS, Jaeggi, ET. Assessment of fetal atrioventricular time intervals by tissue Doppler and pulse Doppler echocardiography: normal values and correlation with fetal electrocardiography. Heart 2006; 92: 1831–837.CrossRefGoogle ScholarPubMed
87Taylor, MJ, Smith, MJThomas, M, Green, AR, Cheng, F, Oseku-Afful, S, et al. Non-invasive fetal electro cardiography in singleton and multiple pregnancies. BJOG 2003; 110: 668–78.Google Scholar
88Cuneo, BF, Zhao, H, Strasburger, JF, Ovadia, M, Huhta, JC, Wakai, RT. Atrial and ventricular rate response and patterns of heart rate acceleration during maternal-fetal terbutaline treatment of fetal complete heart block. Am J Cardiol 2007; 100: 661–65.Google Scholar
89Zhao, H, Cuneo, BF, Strasburger, JF, Huhta, JC, Gotteiner, NL, Wakai, RT. Electrophysiological characteristics of fetal atrioventricular block. J Am Coll Cardiol 2008; 51: 7784.Google Scholar