Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T14:44:15.126Z Has data issue: false hasContentIssue false

THE ANTENATAL CAUSES OF CEREBRAL PALSY – GENETIC AND VIRAL ASSOCIATIONS

Published online by Cambridge University Press:  01 August 2008

CATHERINE S. GIBSON
Affiliation:
Discipline of Obstetrics and Gynaecology, The University of Adelaide, South Australia. Department of Genetic Medicine, Women's and Children's Hospital, Adelaide, South Australia.
ALASTAIR H. MACLENNAN
Affiliation:
Discipline of Obstetrics and Gynaecology, The University of Adelaide, South Australia.
PAUL N. GOLDWATER
Affiliation:
Department of Microbiology and Infectious Diseases, Women's and Children's Hospital, Adelaide, South Australia. Discipline of Paediatrics, The University of Adelaide, South Australia
GUSTAAF A. DEKKER*
Affiliation:
Discipline of Obstetrics and Gynaecology, The University of Adelaide, South Australia.
*
Professor Gustaaf Dekker, The University of Adelaide, Discipline of Obstetrics and Gynaecology, Lyell McEwin Health Service, Haydown Road, Elizabeth Vale 5112, Adelaide, South Australia.

Extract

Cerebral palsy is the most common neurological disorder in children. Epidemiological evidence suggests that antenatal origins are a major cause. Currently there is no antenatal test for cerebral palsy, no proven preventable measures in late pregnancy, and no known cure. Cerebral palsy affects not only the diagnosed child, but also their family and the community, requiring considerable social and financial resources to assist these children in their daily lives.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Goldenberg, R, Nelson, K. Cerebral Palsy. In: Maternal-Fetal Medicine. 4th Edition, Toronto: W.B. Saunders Company, 1999.Google Scholar
2Bax, M, Goldstein, M, Rosenbaum, P, Leviton, A, Paneth, N, Dan, B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 2005; 47: 571–76.CrossRefGoogle ScholarPubMed
3MacLennan, A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. Br Med J 1999; 319: 1054–59.CrossRefGoogle ScholarPubMed
4Badawi, N, Watson, L, Petterson, B, Blair, E, Slee, J, Haan, E, et al. What constitutes cerebral palsy? Dev Med Child Neurol 1998; 40: 520–27.CrossRefGoogle ScholarPubMed
5Nelson, KB, Ellenberg, JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med 1986; 315: 8186.CrossRefGoogle ScholarPubMed
6Blair, E, Stanley, FJ. Intrapartum asphyxia: a rare cause of cerebral palsy. J Pediatr 1988; 112: 515–19.CrossRefGoogle ScholarPubMed
7Pharoah, PO, Platt, MJ, Cooke, T. The changing epidemiology of cerebral palsy. Arch Dis Child Fetal Neonatal Ed 1996; 75: F16973.CrossRefGoogle ScholarPubMed
8Nelson, KB, Grether, JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 1998; 179: 507–13.CrossRefGoogle ScholarPubMed
9Nelson, KB, Dambrosia, JM, Grether, JK, Phillips, TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998; 44: 665–75.CrossRefGoogle ScholarPubMed
10Petersen, MC, Palmer, FB. Advances in prevention and treatment of cerebral palsy. Ment Retard Dev Disabil Res Rev 2001; 7: 3037.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
11Winter, S, Autry, A, Boyle, C, Yeargin-Allsopp, M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics 2002; 110: 1220–225.CrossRefGoogle ScholarPubMed
12Vincer, MJ, Allen, AC, Joseph, KS, Stinson, DA, Scott, H, Wood, E. Increasing Prevalence of Cerebral Palsy Among Very Preterm Infants: A Population-Based Study. Pediatrics 2006; 118: 1621–626.CrossRefGoogle ScholarPubMed
13Perlman, JM. Intrapartum hypoxic-ischemic cerebral injury and subsequent cerebral palsy: medicolegal issues. Pediatrics 1997; 99: 851–59.CrossRefGoogle ScholarPubMed
14Grether, JK, Nelson, KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997; 278: 207–11.CrossRefGoogle ScholarPubMed
15Edwards, AD, Nelson, KB. Neonatal encephalopathies. Time to reconsider the cause of encephalopathies. Br Med J 1998; 317: 1537–538.CrossRefGoogle ScholarPubMed
16Nelson, KB, Grether, JK. Causes of cerebral palsy. Curr Opin Pediatr 1999; 11: 487–91.CrossRefGoogle ScholarPubMed
17Gilstrap, LC, Ramin, SM. Infection and cerebral palsy. Semin Perinatol 2000; 24: 200203.CrossRefGoogle ScholarPubMed
18Yudkin, PL, Johnson, A, Clover, LM, Murphy, KW. Assessing the contribution of birth asphyxia to cerebral palsy in term singletons. Paediatr Perinat Epidemiol 1995; 9: 156–70.CrossRefGoogle ScholarPubMed
19Walstab, J, Bell, R, Reddihough, D, Brennecke, S, Bessell, C, Beischer, N. Antenatal and intrapartum antecedents of cerebral palsy: a case-control study. Aust N Z J Obstet Gynaecol 2002; 42: 138–46.CrossRefGoogle ScholarPubMed
20Strijbis, EM, Oudman, I, van Essen, P, MacLennan, AH. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. Obstet Gynecol 2006; 107: 1357–65.CrossRefGoogle ScholarPubMed
21Nelson, KB, Ellenberg, JH. Obstetric complications as risk factors for cerebral palsy or seizure disorders. JAMA 1984; 251: 1843–48.CrossRefGoogle ScholarPubMed
22Nelson, KB. Relationship of intrapartum and delivery room events to long-term neurologic outcome. Clin Perinatol 1989; 16: 9951007.CrossRefGoogle ScholarPubMed
23Naeye, RL, Peters, EC, Bartholomew, M, Landis, JR. Origins of cerebral palsy. Am J Dis Child 1989; 143: 1154–61.Google ScholarPubMed
24Blair, E, Stanley, F. Intrauterine growth and spastic cerebral palsy. I. Association with birth weight for gestational age. Am J Obstet Gynecol 1990; 162: 229–37.CrossRefGoogle ScholarPubMed
25Blair, E, Stanley, F. When can cerebral palsy be prevented? The generation of causal hypotheses by multivariate analysis of a case-control study. Paediatr Perinat Epidemiol 1993; 7: 272301.CrossRefGoogle ScholarPubMed
26Paneth, N. Etiologic factors in cerebral palsy. Pediatr Ann 1986; 15: 191, 194–5, 197–201.CrossRefGoogle ScholarPubMed
27Pschirrer, ER, Yeomans, ER. Does asphyxia cause cerebral palsy? Semin Perinatol 2000; 24: 215–20.CrossRefGoogle ScholarPubMed
28Eschenbach, DA. Amniotic fluid infection and cerebral palsy. Focus on the fetus. JAMA 1997; 278: 247–48.CrossRefGoogle ScholarPubMed
29Dammann, O, Leviton, A. Brain Damage in Preterm Newborns: Might Enhancement of Developmentally Regulated Endogenous Protection Open a Door for Prevention? Pediatrics 1999; 104: 541–50.CrossRefGoogle Scholar
30Petterson, B, Nelson, KB, Watson, L, Stanley, F. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. Br Med J 1993; 307: 1239–243.CrossRefGoogle ScholarPubMed
31Stanley, F, Blair, E, Alberman, E. Cerebral Palsies: Epidemiology and Causal Pathways. London: Mac Keith Press, 2000.Google Scholar
32Nelson, KB, Willoughby, RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol 2000; 13: 133–39.CrossRefGoogle ScholarPubMed
33Seligsohn, U, Lubetsky, A. Genetic Susceptibility to Venous Thrombosis. N Engl J Med 2001; 344: 1222–231.CrossRefGoogle ScholarPubMed
34Walker, I. Thrombophilia in pregnancy. J Clin Pathol 2000; 53: 573–80.CrossRefGoogle ScholarPubMed
35Scarpati, EM, Sadler, JE. Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin by phorbol 12-myristate 13-acetate and tumor necrosis factor. J Biol Chem 1989; 264: 20705–13.CrossRefGoogle ScholarPubMed
36Esmon, CT. Does inflammation contribute to thrombotic events? Haemostasis 2000; 30: 3440.Google ScholarPubMed
37Arias, F, Romero, R, Joist, H, Kraus, F. Thrombophilia: A mechanism of disease in women with adverse pregnancy outcome and thrombotic lesions in the placenta. J Maternal-Fetal Med 1998; 7: 277–86.Google ScholarPubMed
38Harum, KH, Hoon, AH Jr., Kato, GJ, Casella, JF, Breiter, SN, Johnston, MV. Homozygous factor-V mutation as a genetic cause of perinatal thrombosis and cerebral palsy. Dev Med Child Neurol 1999; 41: 777–80.Google ScholarPubMed
39Harum, KH, Hoon, AH Jr., Casella JF. Factor-V Leiden: a risk factor for cerebral palsy. Dev Med Child Neurol 1999; 41: 781–85.Google ScholarPubMed
40McLintock, C, North, RA, Dekker, G. Inherited thrombophilias: Indications for pregnancy-associated venous thromboembolism and obstetric complications. Curr Probl Obstet Gynecol Fertil 2001; 115–49.CrossRefGoogle Scholar
41Gibson, CS, Maclennan, AH, Hague, WM, Haan, EA, Priest, K, Chan, A, et al. Associations between inherited thrombophilias, gestational age, and cerebral palsy. Am J Obstet Gynecol 2005; 193: 1437 e12.Google ScholarPubMed
42Thorarensen, O, Ryan, S, Hunter, J, Younkin, DP. Factor V Leiden mutation: an unrecognized cause of hemiplegic cerebral palsy, neonatal stroke, and placental thrombosis. Ann Neurol 1997; 42: 372–75.CrossRefGoogle ScholarPubMed
43Kraus, F. Cerebral palsy and thrombi in placental vessels of the fetus: Insights from litigation. Hum Pathol 1997; 28: 246–48.CrossRefGoogle ScholarPubMed
44Kraus, F, Acheen, V. Fetal thrombotic vasculopathy in the placenta: Cerebral thrombi and infarcts, coagulopathies and cerebral palsy. Hum Pathol 1999; 30: 759–69.CrossRefGoogle ScholarPubMed
45Smith, RA, Skelton, M, Howard, M, Levene, M. Is thrombophilia a factor in the development of hemiplegic cerebral palsy? Dev Med Child Neurol 2001; 43: 724–30.CrossRefGoogle ScholarPubMed
46Wheater, M, Rennie, JM. Perinatal infection is an important risk factor for cerebral palsy in very-low-birthweight infants. Dev Med Child Neurol 2000; 42: 364–67.Google ScholarPubMed
47Yoon, BH, Jun, JK, Romero, R, Park, KH, Gomez, R, Choi, JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 1997; 177: 1926.CrossRefGoogle ScholarPubMed
48Halliday, J, Reddihough, D, Byron, K, Ekert, H, Ditchfield, M. Hemiplegic cerebral palsy and the factor V Leiden mutation. J Med Genet 2000; 37: 787–89.CrossRefGoogle ScholarPubMed
49Steiner, M, Hodes, MZ, Shreve, M, Sundberg, S, Edson, JR. Postoperative stroke in a child with cerebral palsy heterozygous for factor V Leiden. J Pediatr Hematol Oncol 2000; 22: 262–64.CrossRefGoogle Scholar
50Sugimoto, T, Woo, M, Nishida, N, Araki, A, Hara, T, Yasuhara, A, et al. When do brain abnormalities in cerebral palsy occur? An MRI study. Dev Med Child Neurol 1995; 37: 285–92.CrossRefGoogle ScholarPubMed
51Zetterberg, H, Regland, B, Palmer, M, Ricksten, A, Palmqvist, L, Rymo, L, et al. Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneously aborted embryos. Eur J Hum Genet 2002; 10: 113–18.CrossRefGoogle ScholarPubMed
52Rodgers, GM, Kane, WH. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest 1986; 77: 1909–16.CrossRefGoogle ScholarPubMed
53Welch, G, Loscalzo, J. Homocysteine and atherothrombosis. N Engl J Med 1998; 338: 10421051.CrossRefGoogle ScholarPubMed
54Christen, WG, Ajani, UA, Glynn, RJ, Hennekens, CH. Blood levels of homocysteine and increased risks of cardiovascular disease: causal or casual? Arch Intern Med 2000; 160: 422–34.CrossRefGoogle ScholarPubMed
55Wang, G, Woo, CW, Sung, FL, Siow, YL, O, K. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol 2002; 22: 1777–783.CrossRefGoogle ScholarPubMed
56Shevell, MI, Majnemer, A, Morin, I. Etiologic yield of cerebral palsy: a contemporary case series. Pediatr Neurol 2003; 28: 352–59.CrossRefGoogle ScholarPubMed
57Andrews, WW, Hauth, JC, Goldenberg, RL. Infection and Preterm Birth. Am J Perinatol 2000; 17: 357–65.CrossRefGoogle ScholarPubMed
58Lamont, RF. Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth. BJOG 2003; 110 Suppl 20: 7175.CrossRefGoogle ScholarPubMed
59Fu, WY, Dudman, NP, Perry, MA, Wang, XL. Leukocytes extravasation in acute homocysteinemic rats. Atherosclerosis 2002; 161: 177–83.CrossRefGoogle ScholarPubMed
60Khajuria, A, Houston, DS. Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis. Blood 2000; 96: 966–72.CrossRefGoogle ScholarPubMed
61Kerlin, BA, Yan, SB, Isermann, BH, Brandt, JT, Sood, R, Basson, BR, et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 2003; 102: 3085–92.CrossRefGoogle ScholarPubMed
62Dammann, O, Leviton, A. Role of the fetus in perinatal infection and neonatal brain damage. Curr Opin Pediatr 2000; 12: 99104.CrossRefGoogle ScholarPubMed
63Kadhim, H, Tabarki, B, Verellen, G, De Prez, C, Rona, AM, Sebire, G. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001; 56: 1278–84.CrossRefGoogle ScholarPubMed
64Dammann, O, Leviton, A. Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant. Semin Pediatr Neurol 1998; 5: 190201.CrossRefGoogle ScholarPubMed
65Foster-Barber, A, Ferriero, DM. Neonatal encephalopathy in the term infant: neuroimaging and inflammatory cytokines. Ment Retard Dev Disabil Res Rev 2002; 8: 2024.CrossRefGoogle ScholarPubMed
66Yoon, BH, Romero, R, Yang, SH, Jun, JK, Kim, IO, Choi, JH, et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol 1996; 174: 1433–40.CrossRefGoogle ScholarPubMed
67Vigneswaran, R. Infection and preterm birth: evidence of a common causal relationship with bronchopulmonary dysplasia and cerebral palsy. J Paediatr Child Health 2000; 36: 293–96.CrossRefGoogle ScholarPubMed
68Inglis, SR, Jeremias, J, Kuno, K, Lescale, K, Peeper, Q, Chervenak, FA, et al. Detection of tumor necrosis factor-alpha, interleukin-6, and fetal fibronectin in the lower genital tract during pregnancy: relation to outcome. Am J Obstet Gynecol 1994; 171: 510.CrossRefGoogle ScholarPubMed
69Yost, NP, Cox, SM. Infection and preterm labor. Clin Obstet Gynecol 2000; 43: 759–67.CrossRefGoogle ScholarPubMed
70Goncalves, LF, Chaiworapongsa, T, Romero, R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8: 313.CrossRefGoogle ScholarPubMed
71Winkler, M. Role of cytokines and other inflammatory mediators. BJOG 2003; 110 Suppl 20: 118–23.CrossRefGoogle ScholarPubMed
72Adinolfi, M. Infectious diseases in pregnancy, cytokines and neurological impairment: an hypothesis. Dev Med Child Neurol 1993; 35: 549–58.CrossRefGoogle Scholar
73Leviton, A. Preterm birth and cerebral palsy: is tumor necrosis factor the missing link? Dev Med Child Neurol 1993; 35: 553–58.CrossRefGoogle ScholarPubMed
74Mazor, M, Furman, B, Wiznitzer, A, Shoham-Vardi, I, Cohen, J, Ghezzi, F. Maternal and perinatal outcome of patients with preterm labor and meconium-stained amniotic fluid. Obstet Gynecol 1995; 86: 830–33.CrossRefGoogle ScholarPubMed
75Mazor, M, Cohen, J, Romero, R, Ghezzi, F, Tolosa, J, Gomez, R. Cytokines and preterm labour. Fet Mat Med Rev 1995; 7: 207–33.CrossRefGoogle Scholar
76Gomez, R, Ghezzi, F, Romero, R, Munoz, H, Tolosa, JE, Rojas, I. Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol 1995; 22: 281–42.CrossRefGoogle ScholarPubMed
77Dammann, O, Leviton, A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 1997; 42: 18.CrossRefGoogle ScholarPubMed
78Yoon, BH, Romero, R, Kim, CJ, Koo, JN, Choe, G, Syn, HC, et al. High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol 1997; 177: 406–11.CrossRefGoogle ScholarPubMed
79Deguchi, K, Oguchi, K, Takashima, S. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 1997; 16: 296300.CrossRefGoogle ScholarPubMed
80Gomez, R, Romero, R, Edwin, SS, David, C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am 1997; 11: 135–76.CrossRefGoogle ScholarPubMed
81Gomez, R, Romero, R, Ghezzi, F, Yoon, BH, Mazor, M, Berry, SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol 1998; 179: 194202.CrossRefGoogle ScholarPubMed
82Baud, O, Emilie, D, Pelletier, E, Lacaze-Masmonteil, T, Zupan, V, Fernandez, H, et al. Amniotic fluid concentrations of interleukin-1beta, interleukin-6 and TNF-alpha in chorioamnionitis before 32 weeks of gestation: histological associations and neonatal outcome. Br J Obstet Gynaecol 1999; 106: 7277.CrossRefGoogle ScholarPubMed
83Urakubo, A, Jarskog, LF, Lieberman, JA, Gilmore, JH. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 2001; 47: 2736.CrossRefGoogle ScholarPubMed
84Knight, JC, Kwiatkowski, D. Inherited variability of tumor necrosis factor production and susceptibility to infectious disease. Proc Assoc Am Physicians 1999; 111: 290–98.CrossRefGoogle ScholarPubMed
85Chung, IY, Benveniste, EN. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol 1990; 144: 29993007.CrossRefGoogle ScholarPubMed
86Aloisi, F, Ria, F, Adorini, L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 2000; 21:141–47.CrossRefGoogle ScholarPubMed
87Kahn, MA, De Vellis, J. Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia 1994; 12: 8798.CrossRefGoogle ScholarPubMed
88Grether, JK, Nelson, KB, Dambrosia, JM, Phillips, TM. Interferons and cerebral palsy. J Pediatr 1999; 134: 324–32.CrossRefGoogle ScholarPubMed
89Westendorp, RG, Langermans, JA, Huizinga, TW, Elouali, AH, Verweij, CL, Boomsma, DI, et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997; 349: 170–73.CrossRefGoogle ScholarPubMed
90Jacob, CO, Fronek, Z, Lewis, GD, Koo, M, Hansen, JA, McDevitt, HO. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci U S A 1990; 87: 1233–237.CrossRefGoogle ScholarPubMed
91Kroeger, KM, Carville, KS, Abraham, LJ. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 1997; 34: 391–99.CrossRefGoogle ScholarPubMed
92Roberts, AK, Monzon-Bordonaba, F, Van Deerlin, PG, Holder, J, Macones, GA, Morgan, MA, et al. Association of polymorphism within the promoter of the tumor necrosis factor alpha gene with increased risk of preterm premature rupture of the fetal membranes. Am J Obstet Gynecol 1999; 180: 1297–302.CrossRefGoogle ScholarPubMed
93Gibson, CS, MacLennan, AH, Goldwater, PN, Haan, EA, Priest, K, Dekker, GA. The association between inherited cytokine polymorphisms and cerebral palsy. Am J Obstet Gynecol 2006; 194: 674 e111.CrossRefGoogle ScholarPubMed
94Mullighan, CG, Marshall, SE, Welsh, KI. Mannose binding lectin polymorphisms are associated with early age of disease onset and autoimmunity in common variable immunodeficiency. Scand J Immunol 2000; 51: 111–22.CrossRefGoogle ScholarPubMed
95Madsen, HO, Garred, P, Thiel, S, Kurtzhals, JA, Lamm, LU, Ryder, LP, et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 1995; 155: 3013–20.CrossRefGoogle ScholarPubMed
96Super, M, Thiel, S, Lu, J, Levinsky, RJ, Turner, MW. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 1989; 2: 1236–239.CrossRefGoogle ScholarPubMed
97Petersen, SV, Thiel, S, Jensen, L, Vorup-Jensen, T, Koch, C, Jensenius, JC. Control of the classical and the MBL pathway of complement activation. Mol Immunol 2000; 37: 803–11.CrossRefGoogle ScholarPubMed
98Aittoniemi, J, Baer, M, Soppi, E, Vesikari, T, Miettinen, A. Mannan binding lectin deficiency and concomitant immunodefects. Arch Dis Child 1998; 78: 245–48.CrossRefGoogle ScholarPubMed
99Matsushita, M. The lectin pathway of the complement system. Microbiol Immunol 1996; 40: 887–93.CrossRefGoogle ScholarPubMed
100Kilpatrick, DC, Starrs, L, Moore, S, Souter, V, Liston, WA. Mannan binding lectin concentration and risk of miscarriage. Hum Reprod 1999; 14: 2379–380.CrossRefGoogle ScholarPubMed
101Summerfield, J, Sumiya, M, Levin, M, Turner, MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series [see comments]. Br Med J 1997; 314: 1229–32.CrossRefGoogle ScholarPubMed
102Nielsen, SL, Andersen, PL, Koch, C, Jensenius, JC, Thiel, S. The level of the serum opsonin, mannan-binding protein in HIV-1 antibody-positive patients. Clin Exp Immunol 1995; 100: 219–22.CrossRefGoogle ScholarPubMed
103Garred, P, Madsen, HO, Balslev, U, Hofmann, B, Pedersen, C, Gerstoft, J, et al. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet 1997; 349: 236–40.CrossRefGoogle ScholarPubMed
104Gibson, CS, MacLennan, AH, Goldwater, PN, Haan, EA, Priest, K, Dekker, GA. Mannose-binding lectin haplotypes may be associated with cerebral palsy only after perinatal viral exposure. Am J Obstet Gynecol 2008; 198: 509.e1509.e8.CrossRefGoogle ScholarPubMed
105Park, JS, Romero, R, Yoon, BH, Moon, JB, Oh, SY, Han, SY, et al. The relationship between amniotic fluid matrix metalloproteinase-8 and funisitis. Am J Obstet Gynecol 2001; 185: 1156–161.CrossRefGoogle ScholarPubMed
106Dammann, O, Leviton, A. Inflammation, brain damage and visual dysfunction in preterm infants. Semin Fetal Neonatal Med 2006;11: 363–68.CrossRefGoogle ScholarPubMed
107Yoon, BH, Romero, R, Park, JS, Kim, M, Oh, SY, Kim, CJ, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol 2000; 183: 1124–129.CrossRefGoogle ScholarPubMed
108Yoon, BH, Romero, R, Park, JS, Kim, CJ, Kim, SH, Choi, JH, et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol 2000; 182: 675–81.CrossRefGoogle Scholar
109Leviton, A, Paneth, N, Reuss, ML, Susser, M, Allred, EN, Dammann, O, et al. Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res 1999; 46: 566–75.CrossRefGoogle ScholarPubMed
110Gaudet, LM, Smith, GN. Cerebral palsy and chorioamnionitis: the inflammatory cytokine link. Obstet Gynecol Surv 2001; 56: 433–36.CrossRefGoogle ScholarPubMed
111Romero, R, Gomez, R, Ghezzi, F, Yoon, BH, Mazor, M, Edwin, SS, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol 1998; 179: 186–93.CrossRefGoogle ScholarPubMed
112Chaiworapongsa, T, Romero, R, Kim, JC, Kim, YM, Blackwell, SC, Yoon, BH, et al. Evidence for fetal involvement in the pathologic process of clinical chorioamnionitis. Am J Obstet Gynecol 2002; 186: 1178–182.CrossRefGoogle ScholarPubMed
113Alexander, J, Gilstrap, L, Cox, S, McIntyre, D, Leveno, K. Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstet Gynecol 1998; 91: 725–29.Google ScholarPubMed
114Cooke, RW. Cerebral palsy in very low birthweight infants. Arch Dis Child 1990; 65: 201206.CrossRefGoogle ScholarPubMed
115Murphy, DJ, Sellers, S, MacKenzie, IZ, Yudkin, PL, Johnson, AM. Case-control study of antenatal and intrapartum risk factors for cerebral palsy in very preterm singleton babies. Lancet 1995; 346: 1449–54.CrossRefGoogle ScholarPubMed
116O'Shea, TM, Klinepeter, KL, Meis, PJ, Dillard, RG. Intrauterine infection and the risk of cerebral palsy in very low-birthweight infants. Paediatr Perinat Epidemiol 1998; 12: 7283.CrossRefGoogle ScholarPubMed
117Grether, JK, Nelson, KB, Emery, ES, Cummins, SK. Prenatal and perinatal factors and cerebral palsy in very low birth weight infants. J Pediatr 1996; 128: 407–14.CrossRefGoogle ScholarPubMed
118Yoon, BH, Kim, CJ, Romero, R, Jun, JK, Park, KH, Choi, ST, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol 1997; 177: 797802.CrossRefGoogle ScholarPubMed
119Wu, YW, Colford, JM. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 2000; 284: 1417–424.CrossRefGoogle ScholarPubMed
120Wu, YW. Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev 2002; 8: 2529.CrossRefGoogle ScholarPubMed
121Yanowitz, TD, Jordan, JA, Gilmour, CH, Towbin, R, Bowen, A, Roberts, JM, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 2002; 51: 310–16.CrossRefGoogle ScholarPubMed
122Adinolfi, M. The development of the human blood-CSF-brain barrier. Dev Med Child Neurol 1985; 27: 532–37.CrossRefGoogle ScholarPubMed
123Megyeri, P, Abraham, CS, Temesvari, P, Kovacs, J, Vas, T, Speer, CP. Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets. Neurosci Lett 1992; 148: 137–40.CrossRefGoogle ScholarPubMed
124Anteby, E, Yagel, S. Immune responses to viral infection. In: Viral Diseases in Pregnancy, New York: Springer Verlag, 1994.CrossRefGoogle Scholar
125Weiner, LP, Fleming, JO. Viral infections of the nervous system. J Neurosurg 1984; 61: 207–24.CrossRefGoogle ScholarPubMed
126Dickinson, J. Viral Teratology. In: Viral Diseases in Pregnancy, Springer-Verlag, 1994.CrossRefGoogle Scholar
127Barton, LL, Mets, MB. Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. Clin Infect Dis 2001; 33: 370–74.CrossRefGoogle ScholarPubMed
128Newton, ER. Diagnosis of perinatal TORCH infections. Clin Obstet Gynecol 1999; 42: 5970.CrossRefGoogle ScholarPubMed
129Remington, JS, Klein, JO. In: Infectious Diseases of the Fetus and Newborn Infant. 4th Edition. Philadelphia: W.B. Saunders Company, 1995.Google Scholar
130McLean, LK, Chehab, FF, Goldberg, JD. Detection of viral deoxyribonucleic acid in the amniotic fluid of low-risk pregnancies by polymerase chain reaction. Am J Obstet Gynecol 1995; 173: 1282–286.CrossRefGoogle ScholarPubMed
131Zdravkovic, M, Knudsen, HJ, Liu, X, Hager, H, Zachar, V, Aboagye-Mathiesen, G, et al. High interferon alpha levels in placenta, maternal, and cord blood suggest a protective effect against intrauterine herpes simplex virus infection. J Med Virol 1997; 51: 210–13.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
132Mouly, F, Mirlesse, V, Meritet, JF, Rozenberg, F, Poissonier, MH, Lebon, P, et al. Prenatal diagnosis of fetal varicella-zoster virus infection with polymerase chain reaction of amniotic fluid in 107 cases. Am J Obstet Gynecol 1997; 177: 894–98.CrossRefGoogle ScholarPubMed
133Palmer, AL, Rotbart, HA, Tyson, RW, Abzug, MJ. Adverse effects of maternal enterovirus infection on the fetus and placenta. J Infect Dis 1997; 176: 1437–44.CrossRefGoogle ScholarPubMed
134Brown, HL, Abernathy, MP. Cytomegalovirus infection. Semin Perinatol 1998; 22: 260–66.CrossRefGoogle ScholarPubMed
135Wenstrom, KD, Andrews, WW, Bowles, NE, Towbin, JA, Hauth, JC, Goldenberg, RL. Intrauterine viral infection at the time of second trimester genetic amniocentesis. Obstet Gynecol 1998; 92: 420–24.Google ScholarPubMed
136Takami, T, Sonodat, S, Houjyo, H, Kawashima, H, Takei, Y, Miyajima, T, et al. Diagnosis of horizontal enterovirus infections in neonates by nested PCR and direct sequence analysis. J Hosp Infect 2000; 45: 283–87.CrossRefGoogle ScholarPubMed
137Gicheva, TA. Modelling coxsackie-virus infection in pregnant mice in long-term experiment. J Hyg Epidemiol Microbiol Immunol 1988; 32: 439–45.Google ScholarPubMed
138Hammad, E, Helin, I, Pacsa, A. Early pregnancy varicella and associated congenital anomalies. Acta Paediatr Scand 1989; 78: 963–64.CrossRefGoogle ScholarPubMed
139Forouzan, I. Fetal abdominal echogenic mass: an early sign of intrauterine cytomegalovirus infection. Obstet Gynecol 1992; 80: 535–37.Google ScholarPubMed
140Korner, H, Fritzsche, U, Burgert, H. Tumor necrosis factor alpha stimulates expression of adenovirus early region 3 proteins: Implications for viral persistence. Proc Natl Acad Sci U S A 1992; 89: 11857–861.CrossRefGoogle ScholarPubMed
141Kerr, JR, Curran, MD, Moore, JE, Murphy, PG. Parvovirus B19 infection - persistence and genetic variation. Scand J Infect Dis 1995; 27: 551–57.CrossRefGoogle ScholarPubMed
142Huang, YC, Lin, TY, Wong, KS, Chiu, CH. Congenital anomalies following maternal varicella infection during early pregnancy. J Formos Med Assoc 1996; 95: 393–95.Google ScholarPubMed
143O'Neill, JF. The ocular manifestations of congenital infection: a study of the early effect and long-term outcome of maternally transmitted rubella and toxoplasmosis. Trans Am Ophthalmol Soc 1998; 96: 813–79.Google ScholarPubMed
144Corey, RP, Flynn, JT. Maternal intrauterine herpes simplex virus infection leading to persistent fetal vasculature. Arch Ophthalmol 2000; 118: 837–40.CrossRefGoogle ScholarPubMed
145Gibson, CS, MacLennan, AH, Goldwater, PN, Haan, EA, Priest, K, Dekker, GA. Neurotropic viruses and cerebral palsy: population based case-control study. Br Med J 2006; 332: 7680.CrossRefGoogle ScholarPubMed