Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T07:34:37.444Z Has data issue: false hasContentIssue false

Opioid receptor heteromers in analgesia

Published online by Cambridge University Press:  10 April 2012

Cristina M. Costantino
Affiliation:
Department of Pharmacology and Systems Therapeutics, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
Ivone Gomes
Affiliation:
Department of Pharmacology and Systems Therapeutics, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
Steven D. Stockton Jr
Affiliation:
Department of Pharmacology and Systems Therapeutics, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
Maribel P. Lim
Affiliation:
Department of Pharmacology and Systems Therapeutics, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
Lakshmi A. Devi*
Affiliation:
Department of Pharmacology and Systems Therapeutics, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
*
*Corresponding author: Lakshmi A. Devi, 1468, Madison Avenue, New York, NY 10029USA. E-mail: [email protected]

Abstract

Opiates such as morphine and fentanyl, a major class of analgesics used in the clinical management of pain, exert their effects through the activation of opioid receptors. Opioids are among the most commonly prescribed and frequently abused drugs in the USA; however, the prolonged use of opiates often leads to the development of tolerance and addiction. Although blockade of opioid receptors with antagonists such as naltrexone and naloxone can lessen addictive impulses and facilitate recovery from overdose, systemic disruption of endogenous opioid receptor signalling through the use of these antagonistic drugs can have severe side effects. In the light of these challenges, current efforts have focused on identifying new therapeutic targets that selectively and specifically modulate opioid receptor signalling and function so as to achieve analgesia without the adverse effects associated with chronic opiate use. We have previously reported that opioid receptors interact with each other to form heteromeric complexes and that these interactions affect morphine signalling. Since chronic morphine administration leads to an enhanced level of these heteromers, these opioid receptor heteromeric complexes represent novel therapeutic targets for the treatment of pain and opiate addiction. In this review, we discuss the role of heteromeric opioid receptor complexes with a focus on mu opioid receptor (MOR) and delta opioid receptor (DOR) heteromers. We also highlight the evidence for altered pharmacological properties of opioid ligands and changes in ligand function resulting from the heteromer formation.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kieffer, B.L. (1995) Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cellular and Molecular Neurobiology 15, 615-635CrossRefGoogle ScholarPubMed
2Waldhoer, M., Bartlett, S.E. and Whistler, J.L. (2004) Opioid receptors. Annual Review of Biochemistry 73, 953-990CrossRefGoogle ScholarPubMed
3Chen, Y.L., Law, P.Y. and Loh, H.H. (2008) The other side of the opioid story: modulation of cell growth and survival signaling. Current Medicinal Chemistry 15, 772-778CrossRefGoogle ScholarPubMed
4Filbey, F.M. et al. (2009) Marijuana craving in the brain. Proceedings of the National Academy of Sciences of the United States of America 106, 13016-13021CrossRefGoogle ScholarPubMed
5Matthes, H.W. et al. (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819-823CrossRefGoogle ScholarPubMed
6Kieffer, B.L. and Evans, C.J. (2009) Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology 56(Suppl. 1), 205-212CrossRefGoogle ScholarPubMed
7Smith, N.J. and Milligan, G. (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacological Reviews 62, 701-725CrossRefGoogle ScholarPubMed
8Gomes, I. et al. (2001) G protein coupled receptor dimerization: implications in modulating receptor function. Journal of Molecular Medicine (Berlin) 79, 226-242CrossRefGoogle ScholarPubMed
9Satake, H. and Sakai, T. (2008) Recent advances and perceptions in studies of heterodimerization between G protein-coupled receptors. Protein and Peptide Letters 15, 300-308CrossRefGoogle ScholarPubMed
10Gonzalez-Maeso, J. (2011) GPCR oligomers in pharmacology and signaling. Molecular Brain 4, 20CrossRefGoogle ScholarPubMed
11Gomes, I. et al. (2011) G protein-coupled receptor heteromerization: a role in allosteric modulation of ligand binding. Molecular Pharmacology 79, 1044-1052CrossRefGoogle ScholarPubMed
12Rozenfeld, R. and Devi, L.A. (2011) Exploring a role for heteromerization in GPCR signalling specificity. Biochemical Journal 433, 11-18CrossRefGoogle ScholarPubMed
13Rozenfeld, R. and Devi, L.A. (2010) Receptor heteromerization and drug discovery. Trends in Pharmacological Sciences 31, 124-130CrossRefGoogle ScholarPubMed
14Williams, D. and Devi, L.A. (2010) Escorts take the lead molecular chaperones as therapeutic targets. Progress in Molecular Biology and Translational Sciences 91, 121-149CrossRefGoogle ScholarPubMed
15Chakrabarti, S., Liu, N.J. and Gintzler, A.R. (2010) Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proceedings of the National Academy of Sciences of the United States of America 107, 20115-20119CrossRefGoogle ScholarPubMed
16Gupta, A. et al. (2010) Increased abundance of opioid receptor heteromers after chronic morphine administration. Science Signalling 3, ra54Google ScholarPubMed
17Rothman, R.B. and Westfall, T.C. (1981) Allosteric modulation by leucine-enkephalin of [3H]naloxone binding in rat brain. European Journal of Pharmacology 72, 365-368CrossRefGoogle ScholarPubMed
18Lee, N.M. and Smith, A.P. (1980) A protein-lipid model of the opiate receptor. Life Sciences 26, 1459-1464CrossRefGoogle ScholarPubMed
19Lord, J.A. et al. (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495-499CrossRefGoogle ScholarPubMed
20Rothman, R.B. and Westfall, T.C. (1982) Morphine allosterically modulates the binding of [3H]leucine enkephalin to a particulate fraction of rat brain. Molecular Pharmacology 21, 538-547Google ScholarPubMed
21Barrett, R.W. and Vaught, J.L. (1982) The effects of receptor selective opioid peptides on morphine-induced analgesia. European Journal of Pharmacology 80, 427-430CrossRefGoogle ScholarPubMed
22Vaught, J.L., Rothman, R.B. and Westfall, T.C. (1982) Mu and delta receptors: their role in analgesia in the differential effects of opioid peptides on analgesia. Life Sciences 30, 1443-1455CrossRefGoogle ScholarPubMed
23Gendron, L. et al. (2006) Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. Journal of Neuroscience 26, 953-962CrossRefGoogle ScholarPubMed
24Morinville, A. et al. (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. Journal of Neuroscience 23, 4888-4898CrossRefGoogle ScholarPubMed
25Cahill, C.M. et al. (2001) Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. Journal of Neuroscience 21, 7598-7607CrossRefGoogle ScholarPubMed
26Zhu, Y. et al. (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24, 243-252CrossRefGoogle ScholarPubMed
27Kieffer, B.L. and Gaveriaux-Ruff, C. (2002) Exploring the opioid system by gene knockout. Progress in Neurobiology 66, 285-306CrossRefGoogle ScholarPubMed
28Billa, S.K., Xia, Y. and Moron, J.A. (2010) Disruption of morphine-conditioned place preference by a delta2-opioid receptor antagonist: study of mu-opioid and delta-opioid receptor expression at the synapse. European Journal of Neuroscience 32, 625-631CrossRefGoogle ScholarPubMed
29Dickenson, A.H. (1991) Mechanisms of the analgesic actions of opiates and opioids. British Medical Bulletin 47, 690-702CrossRefGoogle ScholarPubMed
30Matthes, H.W. et al. (1998) Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. Journal of Neuroscience 18, 7285-7295CrossRefGoogle ScholarPubMed
31Walwyn, W. et al. (2009) Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons. Molecular Pharmacology 76, 134-143CrossRefGoogle ScholarPubMed
32Chengm, P.Y., Liu-Chen, L.Y. and Pickel, V.M. (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Research 778, 367-380CrossRefGoogle Scholar
33Wang, H. and Wessendorf, M.W. (1999) Mu- and delta-opioid receptor mRNAs are expressed in spinally projecting serotonergic and nonserotonergic neurons of the rostral ventromedial medulla. Journal of Comparative Neurology 404, 183-1963.0.CO;2-N>CrossRefGoogle ScholarPubMed
34Gomes, I. et al. (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proceedings of the National Academy of Sciences of the United States of America 101, 5135-5139CrossRefGoogle ScholarPubMed
35Gomes, I., Filipovska, J. and Devi, L.A. (2003) Opioid receptor oligomerization. Detection and functional characterization of interacting receptors. Methods in Molecular Medicine 84, 157-183Google ScholarPubMed
36George, S.R. et al. (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. Journal of Biological Chemistry 275, 26128-26135CrossRefGoogle ScholarPubMed
37Gomes, I. et al. (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. Journal of Neuroscience 20, RC110CrossRefGoogle ScholarPubMed
38Scherrer, G. et al. (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137, 1148-1159CrossRefGoogle ScholarPubMed
39Wang, H.B. et al. (2010) Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proceedings of the National Academy of Sciences of the United States of America 107, 13117-13122CrossRefGoogle ScholarPubMed
40Scherrer, G. et al. (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proceedings of the National Academy of Sciences of the United States of America 103, 9691-9696CrossRefGoogle ScholarPubMed
41Wang, H.B. et al. (2008) Distinct subcellular distribution of delta-opioid receptor fused with various tags in PC12 cells. Neurochemical Research 33, 2028-2034CrossRefGoogle ScholarPubMed
42Decaillot, F.M. et al. (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proceedings of the National Academy of Sciences of the United States of America 105, 16045-16050CrossRefGoogle ScholarPubMed
43Law, P.Y. et al. (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. Journal of Biological Chemistry 280, 11152-11164CrossRefGoogle ScholarPubMed
44Chaipatikul, V. et al. (2003) Rescuing the traffic-deficient mutants of rat mu-opioid receptors with hydrophobic ligands. Molecular Pharmacology 64, 32-41CrossRefGoogle ScholarPubMed
45Stumm, R.K. et al. (2004) Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. Journal of Comparative Neurology 469, 107-118CrossRefGoogle ScholarPubMed
46He, S.Q. et al. (2011) Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron 69, 120-131CrossRefGoogle ScholarPubMed
47Rozenfeld, R. and Devi, L.A. (2007) Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB Journal 21, 2455-2465CrossRefGoogle ScholarPubMed
48Rozenfeld, R. et al. (2007) An emerging role for the delta opioid receptor in the regulation of mu opioid receptor function. Scientific World Journal 7, 64-73CrossRefGoogle ScholarPubMed
49Bohn, L.M. et al. (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286, 2495-2498CrossRefGoogle ScholarPubMed
50Bohn, L.M. et al. (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408, 720-723CrossRefGoogle Scholar
51Trang, T. et al. (2003) Spinal administration of lipoxygenase inhibitors suppresses behavioural and neurochemical manifestations of naloxone-precipitated opioid withdrawal. British Journal of Pharmacology 140, 295-304CrossRefGoogle ScholarPubMed
52Lefkowitz, R.J. et al. (1998) Mechanisms of beta-adrenergic receptor desensitization and resensitization. Advances in Pharmacology 42, 416-420CrossRefGoogle ScholarPubMed
53He, L. et al. (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108, 271-282CrossRefGoogle ScholarPubMed
54Williams, J.T., Christie, M.J. and Manzoni, O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiological Reviews 81, 299-343CrossRefGoogle ScholarPubMed
55Nestler, E.J. (2001) Molecular basis of long-term plasticity underlying addiction. Nature Reviews. Neuroscience 2, 119-128CrossRefGoogle ScholarPubMed
56Finn, A.K. and Whistler, J.L. (2001) Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32, 829-839CrossRefGoogle Scholar
57Guan, J.S. et al. (2005) Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 122, 619-631CrossRefGoogle ScholarPubMed
58Shippenberg, T.S., Chefer, V.I. and Thompson, A.C. (2009) Delta-opioid receptor antagonists prevent sensitization to the conditioned rewarding effects of morphine. Biological Psychiatry 65, 169-174CrossRefGoogle Scholar
59Daniels, D.J. et al. (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proceedings of the National Academy of Sciences of the United States of America 102, 19208-19213CrossRefGoogle Scholar
60Lenard, N.R. et al. (2007) Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. European Journal of Pharmacology 566, 75-82CrossRefGoogle ScholarPubMed
61Lenard, N.R. and Roerig, S.C. (2005) Development of antinociceptive tolerance and physical dependence following morphine i.c.v. infusion in mice. European Journal of Pharmacology 527, 71-76CrossRefGoogle ScholarPubMed
62Ren, K. and Dubner, R. (2002) Descending modulation in persistent pain: an update. Pain 100, 1-6CrossRefGoogle ScholarPubMed
63Porreca, F., Ossipov, M.H. and Gebhart, G.F. (2002) Chronic pain and medullary descending facilitation. Trends in Neurosciences 25, 319-325CrossRefGoogle ScholarPubMed
64Sora, I. et al. (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proceedings of the National Academy of Sciences of the United States of America 94, 1544-1549CrossRefGoogle ScholarPubMed
65Bushlin, I., Rozenfeld, R. and Devi, L.A. (2010) Cannabinoid–opioid interactions during neuropathic pain and analgesia. Current Opinion in Pharmacology 10, 80-86CrossRefGoogle ScholarPubMed
66Robledo, P. et al. (2008) Advances in the field of cannabinoid–opioid cross-talk. Addiction Biology 13, 213-224CrossRefGoogle ScholarPubMed
67Chen, J.P. et al. (1990) Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology (Berlin) 102, 156-162CrossRefGoogle ScholarPubMed
68Tanda, G., Pontieri, F.E. and Di Chiara, G. (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276, 2048-2050CrossRefGoogle ScholarPubMed
69Cichewicz, D.L. and McCarthy, E.A. (2003) Antinociceptive synergy between delta(9)-tetrahydrocannabinol and opioids after oral administration. Journal of Pharmacology and Experimental Therapeutics 304, 1010-1015CrossRefGoogle ScholarPubMed
70Cichewicz, D.L. et al. (1999) Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification. Journal of Pharmacology and Experimental Therapeutics 289, 859-867Google ScholarPubMed
71Reche, I., Fuentes, J.A., Ruiz-Gayo, M. (1996) Potentiation of delta 9-tetrahydrocannabinol-induced analgesia by morphine in mice: involvement of mu- and kappa-opioid receptors. European Journal of Pharmacology 318, 11-16CrossRefGoogle ScholarPubMed
72Navarro, M. et al. (1998) CB1 cannabinoid receptor antagonist-induced opiate withdrawal in morphine-dependent rats. Neuroreport 9, 3397-3402CrossRefGoogle ScholarPubMed
73Valverde, O. et al. (2001) Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. European Journal of Neuroscience 13, 1816-1824CrossRefGoogle ScholarPubMed
74Lichtman, A.H. et al. (2001) Opioid and cannabinoid modulation of precipitated withdrawal in delta(9)-tetrahydrocannabinol and morphine-dependent mice. Journal of Pharmacology and Experimental Therapeutics 298, 1007-1014Google ScholarPubMed
75Vela, G., Ruiz-Gayo, M. and Fuentes, J.A. (1995) Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. Neuropharmacology 34, 665-668CrossRefGoogle ScholarPubMed
76Ledent, C. et al. (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401-404CrossRefGoogle ScholarPubMed
77Ghozland, S. et al. (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. Journal of Neuroscience 22, 1146-1154CrossRefGoogle ScholarPubMed
78Castane, A. et al. (2003) Cannabinoid withdrawal syndrome is reduced in double mu and delta opioid receptor knockout mice. European Journal of Neuroscience 17, 155-159CrossRefGoogle ScholarPubMed
79Vigano, D. et al. (2005) Molecular mechanisms involved in the asymmetric interaction between cannabinoid and opioid systems. Psychopharmacology (Berlin) 182, 527-536CrossRefGoogle ScholarPubMed
80Rubino, T. et al. (1997) Chronic treatment with a synthetic cannabinoid CP-55,940 alters G-protein expression in the rat central nervous system. Brain Research. Molecular Brain Research 44, 191-197CrossRefGoogle ScholarPubMed
81Gonzalez, S. et al. (2002) Chronic exposure to morphine, cocaine or ethanol in rats produced different effects in brain cannabinoid CB(1) receptor binding and mRNA levels. Drug and Alcohol Dependence 66, 77-84CrossRefGoogle ScholarPubMed
82Gonzalez, S. et al. (2003) Region-dependent changes in endocannabinoid transmission in the brain of morphine-dependent rats. Addiction Biology 8, 159-166CrossRefGoogle ScholarPubMed
83Thorat, S.N. and Bhargava, H.N. (1994) Evidence for a bidirectional cross-tolerance between morphine and delta 9-tetrahydrocannabinol in mice. European Journal of Pharmacology 260, 5-13CrossRefGoogle ScholarPubMed
84Romero, J. et al. (1998) Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta9-tetrahydrocannabinol. Synapse 30, 298-3083.0.CO;2-6>CrossRefGoogle ScholarPubMed
85Lim, G., Wang, S. and Mao, J. (2005) Central glucocorticoid receptors modulate the expression of spinal cannabinoid receptors induced by chronic morphine exposure. Brain Research 1059, 20-27CrossRefGoogle ScholarPubMed
86Salio, C. et al. (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport 12, 3689-3692CrossRefGoogle ScholarPubMed
87Rodriguez, J.J., Mackie, K. and Pickel, V.M. (2001) Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. Journal of Neuroscience 21, 823-833CrossRefGoogle ScholarPubMed
88Hohmann, A.G. and Herkenham, M. (2000) Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse 37, 71-803.0.CO;2-K>CrossRefGoogle ScholarPubMed
89Pickel, V.M. et al. (2004) Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127, 101-112CrossRefGoogle ScholarPubMed
90Welch, S.P. and Stevens, D.L. (1992) Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. Journal of Pharmacology and Experimental Therapeutics 262, 10-18Google ScholarPubMed
91Herkenham, M. et al. (1991) Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Research 547, 267-274CrossRefGoogle ScholarPubMed
92Mansour, A. et al. (1988) Anatomy of CNS opioid receptors. Trends in Neurosciences 11, 308-314CrossRefGoogle ScholarPubMed
93Lichtman, A.H., Cook, S.A. and Martin, B.R. (1996) Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. Journal of Pharmacology and Experimental Therapeutics 276, 585-593Google ScholarPubMed
94Rios, C., Gomes, I. and Devi, L.A. (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. British Journal of Pharmacology 148, 387-395CrossRefGoogle ScholarPubMed
95Hojo, M. et al. (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. Journal of Pharmacological Sciences 108, 308-319CrossRefGoogle ScholarPubMed
96Korzh, A. et al. (2008) Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Research 1189, 23-32CrossRefGoogle ScholarPubMed
97Rubovitch, V., Gafni, M. and Sarne, Y. (2004) The involvement of VEGF receptors and MAPK in the cannabinoid potentiation of Ca2+ flux into N18TG2 neuroblastoma cells. Brain Research. Molecular Brain Research 120, 138-144CrossRefGoogle ScholarPubMed
98Shapira, M., Gafni, M. and Sarne, Y. (1998) Independence of, and interacEtions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells. Brain Research 806, 26-35CrossRefGoogle ScholarPubMed
99Law, P.Y. et al. (1982) Potentiation of opiate action in neuroblastoma N18TG2 cells by lipid incorporation. Molecular Pharmacology 21, 492-502Google ScholarPubMed
100Dill, J.A. and Howlett, A.C. (1988) Regulation of adenylate cyclase by chronic exposure to cannabimimetic drugs. Journal of Pharmacology and Experimental Therapeutics 244, 1157-1163Google ScholarPubMed
101Berrendero, F. et al. (2003) Cannabinoid receptor and WIN 55 212-2-stimulated [35S]-GTPgammaS binding in the brain of mu-, delta- and kappa-opioid receptor knockout mice. European Journal of Neuroscience 18, 2197-2202CrossRefGoogle ScholarPubMed
102Uriguen, L. et al. (2005) Kappa- and delta-opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice. European Journal of Neuroscience 22, 2106-2110CrossRefGoogle ScholarPubMed
103Rozenfeld, R. et al. (2012) Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS One 7, e29239CrossRefGoogle ScholarPubMed
104Narang, S. et al. (2008) Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. Journal of Pain 9, 254-264CrossRefGoogle ScholarPubMed
105Jordan, B.A. and Devi, L.A. (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697-700CrossRefGoogle ScholarPubMed
106Pan, Y.X., Bolan, E. and Pasternak, G.W. (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochemical and Biophysical Research Communications 297, 659-663CrossRefGoogle ScholarPubMed
107Wang, D. et al. (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Molecular Pharmacology 67, 2173-2184CrossRefGoogle ScholarPubMed