Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T19:30:54.998Z Has data issue: false hasContentIssue false

Oestrogens as apoptosis regulators in mammalian testis: angels or devils?

Published online by Cambridge University Press:  27 January 2015

Sara Correia
Affiliation:
CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
Henrique J. Cardoso
Affiliation:
CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
José E. Cavaco
Affiliation:
CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
Sílvia Socorro*
Affiliation:
CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
*
*Corresponding author: Sílvia Socorro, CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal. E-mail: [email protected]

Abstract

In the mammalian testis, spermatogenesis is a highly coordinated process of germ cell development, which ends with the release of ‘mature’ spermatozoa. The fine regulation of spermatogenesis is strictly dependent on sex steroid hormones, which orchestrate the cellular and molecular events underlying normal development of germ cells. Sex steroids actions also rely on the control of germ cell survival, and the programmed cell death by apoptosis has been indicated as a critical process in regulating the size and quality of the germ line. Recently, oestrogens have emerged as important regulators of germ cell fate. However, the beneficial or detrimental effects of oestrogens in spermatogenesis are controversial, with independent reports arguing for their role as cell survival factors or as apoptosis-inducers. The dual behaviour of oestrogens, shifting from ‘angels to devils’ is supported by the clinical findings of increased oestrogens levels in serum and intratesticular milieu of idiopathic infertile men. This review aims to discuss the available information concerning the role of oestrogens in the control of germ cell death and summarises the signalling mechanisms driven oestrogen-induced apoptosis. The present data represent a valuable basis for the clinical management of hyperoestrogenism-related infertility and provide a rationale for the use of oestrogen-target therapies in male infertility.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hermo, L. et al. (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microscopy Research and Technique 73, 241-278 CrossRefGoogle ScholarPubMed
2. Hess, R.A. and de Franca, L.R. (2008) Spermatogenesis and cycle of the seminiferous epithelium. In Molecular Mechanisms in Spermatogenesis (Cheng CY, Ed.), pp. 1-15. Springer, New York Google Scholar
3. Aitken, R.J. et al. (2011) Apoptosis in the germ line. Reproduction 141, 139-150 CrossRefGoogle ScholarPubMed
4. Lin, W.W. et al. (1997) Apoptotic frequency is increased in spermatogenic maturation arrest and hypospermatogenic states. The Journal of Urology 158, 1791-1793 CrossRefGoogle ScholarPubMed
5. Eguchi, J. et al. (2002) Fas–Fas ligand system as a possible mediator of spermatogenic cell apoptosis in human maturation-arrested testes. Human Cell 15, 61-68 CrossRefGoogle ScholarPubMed
6. Streichemberger, E. et al. (2012) Case report of apoptosis in testis of four AZFc-deleted patients: increased DNA fragmentation during meiosis, but decreased apoptotic markers in post-meiotic germ cells. Human Reproduction 27, 1939-1945 CrossRefGoogle ScholarPubMed
7. Yeh, S. et al. (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proceedings of the National Academy of Sciences of the United States of America 99, 13498-13503 CrossRefGoogle Scholar
8. Carani, C. et al. (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. New England Journal of Medicine 337, 91-95 CrossRefGoogle Scholar
9. Herrmann, B.L. et al. (2002) Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. Journal of Clinical Endocrinology and Metabolism 87, 5476-5484 CrossRefGoogle Scholar
10. Phillips, K.P. and Tanphaichitr, N. (2008) Human exposure to endocrine disrupters and semen quality. Journal of Toxicology and Environmental Health, Part B 11, 188-220 CrossRefGoogle ScholarPubMed
11. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicologic Pathology 35, 495-516 CrossRefGoogle ScholarPubMed
12. Lawen, A. (2003) Apoptosis-an introduction. Bioessays 25, 888-896 CrossRefGoogle ScholarPubMed
13. McIlwain, D.R., Berger, T. and Mak, T.W. (2013) Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology 5, a008656CrossRefGoogle ScholarPubMed
14. Kaufmann, S.H. and Gores, G.J. (2000) Apoptosis in cancer: cause and cure. Bioessays 22, 1007-1017 3.0.CO;2-4>CrossRefGoogle ScholarPubMed
15. Shaha, C., Tripathi, R. and Mishra, D.P. (2010) Male germ cell apoptosis: regulation and biology. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 1501-1515 CrossRefGoogle ScholarPubMed
16. Griswold, M.D. (1998) The central role of Sertoli cells in spermatogenesis. Seminars in Cell and Developmental Biology 9, 411-416 CrossRefGoogle ScholarPubMed
17. Sharpe, R.M. et al. (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769-784 CrossRefGoogle ScholarPubMed
18. Mruk, D.D. and Cheng, C.Y. (2004) Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocrine Reviews 25, 747-806 CrossRefGoogle ScholarPubMed
19. Rossi, P. et al. (1991) Expression of the mRNA for the ligand of c-kit in mouse Sertoli cells. Biochemical and Biophysical Research Communications 176, 910-914 CrossRefGoogle ScholarPubMed
20. Yoshinaga, K. et al. (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113, 689-699 CrossRefGoogle ScholarPubMed
21. Yan, W., Suominen, J. and Toppari, J. (2000) Stem cell factor protects germ cells from apoptosis in vitro. Journal of Cell Science 113, 161-168 CrossRefGoogle ScholarPubMed
22. Sato, T. et al. (2012) Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proceedings of the National Academy of Sciences of the United States of America 109, 16934-16938 CrossRefGoogle ScholarPubMed
23. Lizama, C. et al. (2010) TACE/ADAM17 is involved in germ cell apoptosis during rat spermatogenesis. Reproduction 140, 305-317 CrossRefGoogle ScholarPubMed
24. Kissel, H. et al. (2000) Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO Journal 19, 1312-1326 CrossRefGoogle ScholarPubMed
25. Lee, J. et al. (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138, 2081-2088 CrossRefGoogle ScholarPubMed
26. Pentikäinen, V., Erkkilä, K. and Dunkel, L. (1999) Fas regulates germ cell apoptosis in the human testis in vitro. American Journal of Physiology –Endocrinology and Metabolism 276, E310-E316 CrossRefGoogle ScholarPubMed
27. Lee, J. et al. (1999) The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in sertoli cell versus germ cell injury of the testis 1. Endocrinology 140, 852-858 CrossRefGoogle Scholar
28. Takagi, S. et al. (2001) Spermatogonial proliferation and apoptosis in hypospermatogenesis associated with nonobstructive azoospermia. Fertility and Sterility 76, 901-907 CrossRefGoogle ScholarPubMed
29. Lin, W. et al. (1999) Demonstration of testicular apoptosis in human male infertility states using a DNA laddering technique. International Urology and Nephrology 31, 361-370 CrossRefGoogle ScholarPubMed
30. Stiblar-Martincic, D. (2009) Morphometrical evaluation of germ cell apoptosis in infertile men. Folia Biologica (Praha) 55, 233-237 Google ScholarPubMed
31. Kandirali, E. et al. (2009) Does the testicular apoptotic index vary with serum gonadotropins and testicular histopathology in infertile men? Urologia Internationalis 83, 349-353 CrossRefGoogle ScholarPubMed
32. Martincic, D.S. et al. (2001) Germ cell apoptosis in the human testis. Pflügers Archiv 442, r159-r160 CrossRefGoogle ScholarPubMed
33. Kilic, S. et al. (2009) Caspase-3 and VEGF immunopositivity in seminiferous tubule germ cells in cases of obstructive and non-obstructive azoospermia in smokers versus non-smokers. Journal of Assisted Reproduction and Genetics 26, 57-63 CrossRefGoogle ScholarPubMed
34. Bozec, A. et al. (2008) Status of the executioner step of apoptosis in human with normal spermatogenesis and azoospermia. Fertility and Sterility 90, 1723-1731 CrossRefGoogle ScholarPubMed
35. Kim, S.-K. et al. (2007) Involvement of the Fas–Fas ligand system and active caspase-3 in abnormal apoptosis in human testes with maturation arrest and Sertoli cell-only syndrome. Fertility and Sterility 87, 547-553 CrossRefGoogle ScholarPubMed
36. Almeida, C. et al. (2013) Caspase signalling pathways in human spermatogenesis. Journal of Assisted Reproduction and Genetics 30, 487-495 CrossRefGoogle ScholarPubMed
37. Francavilla, S. et al. (2002) Fas expression correlates with human germ cell degeneration in meiotic and post-meiotic arrest of spermatogenesis. Molecular Human Reproduction 8, 213-220 CrossRefGoogle ScholarPubMed
38. Francavilla, S. et al. (2000) Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. Journal of Clinical Endocrinology and Metabolism 85, 2692-2700 CrossRefGoogle ScholarPubMed
39. Cavalcanti, M. et al. (2011) Apoptotic gene expression in potentially fertile and subfertile men. Molecular Human Reproduction 17, 415-420 CrossRefGoogle ScholarPubMed
40. Almeida, C. et al. (2011) Caspase-3 detection in human testicular spermatozoa from azoospermic and non-azoospermic patients. International Journal of Andrology 34, e407-e414 CrossRefGoogle ScholarPubMed
41. Zalata, A. et al. (2011) Sperm caspase-9 in oligoasthenoteratozoospermic men with and without varicocele. Fertility and Sterility 96, 1097-1099 CrossRefGoogle ScholarPubMed
42. Barroso, G., Morshedi, M. and Oehninger, S. (2000) Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Human Reproduction 15, 1338-1344 CrossRefGoogle ScholarPubMed
43. Weng, S.-L. et al. (2002) Caspase activity and apoptotic markers in ejaculated human sperm. Molecular Human Reproduction 8, 984-991 CrossRefGoogle ScholarPubMed
44. Laurentino, S. et al. (2011) Apoptosis-inhibitor Aven is downregulated in defective spermatogenesis and a novel estrogen target gene in mammalian testis. Fertility and Sterility 96, 745-750 CrossRefGoogle Scholar
45. Laurentino, S.S. et al. (2012) Regucalcin, a calcium-binding protein with a role in male reproduction? Molecular Human Reproduction 18, 161-170 CrossRefGoogle ScholarPubMed
46. Weikert, S. et al. (2005) Expression levels of the inhibitor of apoptosis survivin in testes of patients with normal spermatogenesis and spermatogenic failure. Fertility and Sterility 83, 1100-1105 CrossRefGoogle ScholarPubMed
47. Chau, B.N. et al. (2000) Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Molecular Cell 6, 31-40 CrossRefGoogle Scholar
48. Marques, R. et al. (2014) The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cellular and Molecular Life Sciences 71, 93-111 CrossRefGoogle ScholarPubMed
49. Mita, A.C. et al. (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clinical Cancer Research 14, 5000-5005 CrossRefGoogle ScholarPubMed
50. Correia, S. et al. (2014) Transgenic overexpression of regucalcin leads to suppression of thapsigargin-and actinomycin D-induced apoptosis in the testis by modulation of apoptotic pathways. Andrology 2, 290-298 CrossRefGoogle ScholarPubMed
51. Woolveridge, I. et al. (1999) Apoptosis in the rat spermatogenic epithelium following androgen withdrawal: changes in apoptosis-related genes. Biology of Reproduction 60, 461-470 CrossRefGoogle ScholarPubMed
52. Chang, C. et al. (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proceedings of the National Academy of Sciences of the United States of America 101, 6876-6881 CrossRefGoogle ScholarPubMed
53. Wang, R.-S. et al. (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocrine Reviews 30, 119-132 CrossRefGoogle ScholarPubMed
54. Mangelsdorf, D.J. et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835-839 CrossRefGoogle ScholarPubMed
55. Gronemeyer, H., Gustafsson, J.A. and Laudet, V. (2004) Principles for modulation of the nuclear receptor superfamily. Nature Reviews. Drug Discovery 3, 950-964 CrossRefGoogle ScholarPubMed
56. Beato, M. and Klug, J. (2000) Steroid hormone receptors: an update. Human Reproduction Update 6, 225-236 CrossRefGoogle ScholarPubMed
57. Klug, A. and Schwabe, J.W. (1995) Protein motifs 5. Zinc fingers. FASEB Journal 9, 597-604 CrossRefGoogle ScholarPubMed
58. O'Donnell, L. et al. (2001) Estrogen and spermatogenesis. Endocrine Reviews 22, 289-318 CrossRefGoogle ScholarPubMed
59. Schultz, J.R., Petz, L.N. and Nardulli, A.M. (2005) Cell- and ligand-specific regulation of promoters containing activator protein-1 and Sp1 sites by estrogen receptors alpha and beta. Journal of Biological Chemistry 280, 347-354 CrossRefGoogle ScholarPubMed
60. Mak, P., Ho, S.-M. and Callard, I.P. (1983) Characterization of an estrogen receptor in the turtle testis. General and Comparative Endocrinology 52, 182-189 CrossRefGoogle ScholarPubMed
61. Krust, A. et al. (1986) The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO Journal 5, 891 CrossRefGoogle ScholarPubMed
62. Kuiper, G. et al. (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America 93, 5925-5930 CrossRefGoogle ScholarPubMed
63. Mosselman, S., Polman, J. and Dijkema, R. (1996) ERβ: identification and characterization of a novel human estrogen receptor. FEBS Letters 392, 49-53 CrossRefGoogle ScholarPubMed
64. Socorro, S. et al. (2000) Two estrogen receptors expressed in the teleost fish, Sparus aurata: cDNA cloning, characterization and tissue distribution. Journal of Endocrinology 166, 293-306 CrossRefGoogle ScholarPubMed
65. Kuiper, G.G. et al. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863-870 CrossRefGoogle ScholarPubMed
66. Dutertre, M. and Smith, C.L. (2000) Molecular mechanisms of selective estrogen receptor modulator (SERM) action. Journal of Pharmacology and Experimental Therapeutics 295, 431-437 Google ScholarPubMed
67. McDonnell, D.P. and Wardell, S.E. (2010) The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Current Opinion in Pharmacology 10, 620-628 CrossRefGoogle ScholarPubMed
68. Carreau, S. and Hess, R.A. (2010) Oestrogens and spermatogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 1517-1535 CrossRefGoogle ScholarPubMed
69. Pentikainen, V. et al. (2000) Estradiol acts as a germ cell survival factor in the human testis in vitro. Journal of Clinical Endocrinology and Metabolism 85, 2057-2067 Google ScholarPubMed
70. Taylor, A.H. and Al-Azzawi, F. (2000) Immunolocalisation of oestrogen receptor b in human tissues. Journal of Molecular Endocrinology 24, 145-155 CrossRefGoogle Scholar
71. Makinen, S. et al. (2001) Localization of oestrogen receptors alpha and beta in human testis. Molecular Human Reproduction 7, 497-503 CrossRefGoogle ScholarPubMed
72. Saunders, P.T. et al. (2001) Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates. Molecular Human Reproduction 7, 227-236 CrossRefGoogle ScholarPubMed
73. Aquila, S. et al. (2004) Estrogen receptor (ER)alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway. Journal of Clinical Endocrinology and Metabolism 89, 1443-1451 CrossRefGoogle ScholarPubMed
74. Lambard, S. et al. (2004) Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. Journal of Molecular Endocrinology 32, 279-289 CrossRefGoogle ScholarPubMed
75. Solakidi, S. et al. (2005) Estrogen receptors alpha and beta (ERalpha and ERbeta) and androgen receptor (AR) in human sperm: localization of ERbeta and AR in mitochondria of the midpiece. Human Reproduction 20, 3481-3487 CrossRefGoogle ScholarPubMed
76. Cavaco, J.E. et al. (2009) Estrogen receptors alpha and beta in human testis: both isoforms are expressed. Systems Biology in Reproductive Medicine 55, 137-144 CrossRefGoogle ScholarPubMed
77. Durkee, T.J., Mueller, M. and Zinaman, M. (1998) Identification of estrogen receptor protein and messenger ribonucleic acid in human spermatozoa. American Journal of Obstetrics and Gynecology 178, 1288-1297 CrossRefGoogle ScholarPubMed
78. Smith, E.P. et al. (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. New England Journal of Medicine 331, 1056-1061 CrossRefGoogle ScholarPubMed
79. Galan, J.J. et al. (2005) Multilocus analyses of estrogen-related genes reveal involvement of the ESR1 gene in male infertility and the polygenic nature of the pathology. Fertility and Sterility 84, 910-918 CrossRefGoogle ScholarPubMed
80. Guarducci, E. et al. (2006) Estrogen receptor α promoter polymorphism: stronger estrogen action is coupled with lower sperm count. Human Reproduction 21, 994-1001 CrossRefGoogle ScholarPubMed
81. Meng, J., Mu, X. and Wang, Y. (2013) Influence of the XbaI polymorphism in the estrogen receptor-alpha gene on human spermatogenic defects. Genetics and Molecular Research 12, 1808-1815 CrossRefGoogle ScholarPubMed
82. Safarinejad, M.R., Shafiei, N. and Safarinejad, S. (2010) Association of polymorphisms in the estrogen receptors alpha, and beta (ESR1, ESR2) with the occurrence of male infertility and semen parameters. The Journal of Steroid Biochemistry and Molecular Biology 122, 193-203 CrossRefGoogle ScholarPubMed
83. Lazaros, L.A. et al. (2010) Estrogen receptor α and β polymorphisms are associated with semen quality. Journal of Andrology 31, 291-298 CrossRefGoogle ScholarPubMed
84. Prossnitz, E.R. et al. (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annual Review of Physiology 70, 165-190 CrossRefGoogle ScholarPubMed
85. Sirianni, R. et al. (2008) The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17β-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149, 5043-5051 CrossRefGoogle ScholarPubMed
86. Chimento, A. et al. (2010) 17β-estradiol activates rapid signaling pathways involved in rat pachytene spermatocytes apoptosis through GPR30 and ERα. Molecular and Cellular Endocrinology 320, 136-144 CrossRefGoogle Scholar
87. Chimento, A. et al. (2011) Gper and ESRs are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax. International Journal of Andrology 34, 420-429 CrossRefGoogle ScholarPubMed
88. Lucas, T.F. et al. (2010) Expression and signaling of G protein-coupled estrogen receptor 1 (GPER) in rat Sertoli cells. Biology of Reproduction 83, 307-317 CrossRefGoogle ScholarPubMed
89. Royer, C. et al. (2012) 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat sertoli cells. Biology of Reproduction 86, 108CrossRefGoogle ScholarPubMed
90. Loss, E.S., Jacobus, A.P. and Wassermann, G.F. (2011) Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: calcium inflow and electrophysiological changes. Life Sciences 89, 577-583 CrossRefGoogle ScholarPubMed
91. Rago, V. et al. (2011) Identification of the estrogen receptor GPER in neoplastic and non-neoplastic human testes. Reproductive Biology and Endocrinology 9, 135 CrossRefGoogle ScholarPubMed
92. Chevalier, N. et al. (2012) GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation. PLoS ONE 7, e34672 CrossRefGoogle ScholarPubMed
93. Oliveira, P.F. et al. (2014) Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells. General and Comparative Endocrinology 201, 16-20 CrossRefGoogle ScholarPubMed
94. Devi, Y.S. et al. (2006) Follicle-stimulating hormone-independent functions of primate Sertoli cells: potential implications in the diagnosis and management of male infertility. Journal of Clinical Endocrinology and Metabolism 91, 1062-1068 CrossRefGoogle ScholarPubMed
95. Chimento, A. et al. (2014) Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis. Frontiers in Endocrinology 5, 1CrossRefGoogle Scholar
96. Akingbemi, B.T. et al. (2003) Estrogen receptor-α gene deficiency enhances androgen biosynthesis in the mouse Leydig cell. Endocrinology 144, 84-93 CrossRefGoogle ScholarPubMed
97. Strauss, L. et al. (2009) Increased exposure to estrogens disturbs maturation, steroidogenesis, and cholesterol homeostasis via estrogen receptor α in adult mouse Leydig cells. Endocrinology 150, 2865-2872 CrossRefGoogle ScholarPubMed
98. Vaucher, L. et al. (2014) Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat leydig cells and adult human testis. PloS ONE 9, e92425 CrossRefGoogle ScholarPubMed
99. Pak, T.R., Lynch, G.R. and Tsai, P.-S. (2002) Estrogen accelerates gonadal recrudescence in photo-regressed male Siberian hamsters. Endocrinology 143, 4131-4134 CrossRefGoogle ScholarPubMed
100. Gancarczyk, M. et al. (2004) Dose- and photoperiod-dependent effects of 17beta-estradiol and the anti-estrogen ICI 182,780 on testicular structure, acceleration of spermatogenesis, and aromatase immunoexpression in immature bank voles. Acta Histochemica 106, 269-278 CrossRefGoogle ScholarPubMed
101. Li, E.Z. et al. (2007) 17beta-estradiol stimulates proliferation of spermatogonia in experimental cryptorchid mice. Asian Journal of Andrology 9, 659-667 CrossRefGoogle ScholarPubMed
102. Walczak-Jedrzejowska, R. et al. (2008) Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both. Asian Journal of Andrology 10, 585-592 CrossRefGoogle ScholarPubMed
103. Wahlgren, A. et al. (2008) Estrogen receptor β selective ligand 5α-androstane-3β, 17β-diol stimulates spermatogonial deoxyribonucleic acid synthesis in rat seminiferous epithelium in vitro. Endocrinology 149, 2917-2922 CrossRefGoogle ScholarPubMed
104. Cattanach, B. et al. (1977) Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269, 338-340 CrossRefGoogle Scholar
105. Ebling, F.J. et al. (2000) Estrogenic induction of spermatogenesis in the hypogonadal mouse. Endocrinology 141, 2861-2869 CrossRefGoogle ScholarPubMed
106. Baines, H. et al. (2008) Effects of estradiol and FSH on maturation of the testis in the hypogonadal (hpg) mouse. Reproductive Biology and Endocrinology 6, 1477-7827 CrossRefGoogle ScholarPubMed
107. Porter, K.L. et al. (2009) Estrogen enhances recovery from radiation-induced spermatogonial arrest in rat testes. Journal of Andrology 30, 440-451 CrossRefGoogle ScholarPubMed
108. Zhou, W. et al. (2011) Estrogen-regulated genes in rat testes and their relationship to recovery of spermatogenesis after irradiation. Biology of Reproduction 85, 823-833 CrossRefGoogle ScholarPubMed
109. Shetty, G. et al. (1997) Effect of estrogen deprivation on the reproductive physiology of male and female primates. The Journal of Steroid Biochemistry and Molecular Biology 61, 157-166 CrossRefGoogle ScholarPubMed
110. Shetty, G. et al. (1998) Effect of long-term treatment with aromatase inhibitor on testicular function of adult male bonnet monkeys (M. radiata). Steroids 63, 414-420 CrossRefGoogle ScholarPubMed
111. Robertson, K.M. et al. (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proceedings of the National Academy of Sciences of the United States of America 96, 7986-7991 CrossRefGoogle ScholarPubMed
112. Robertson, K.M. et al. (2002) The phenotype of the aromatase knockout mouse reveals dietary phytoestrogens impact significantly on testis function. Endocrinology 143, 2913-2921 CrossRefGoogle ScholarPubMed
113. D'Souza, R. et al. (2005) Effect of high intratesticular estrogen on the seminiferous epithelium in adult male rats. Molecular and Cellular Endocrinology 241, 41-48 CrossRefGoogle ScholarPubMed
114. Balasinor, N.H. et al. (2010) Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats. Reproductive Biology and Endocrinology 8, 72 CrossRefGoogle ScholarPubMed
115. Cacciola, G. et al. (2013) Low 17beta-estradiol levels in CNR1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization. Biology of Reproduction 88, 152 CrossRefGoogle ScholarPubMed
116. Cacciola, G. et al. (2013) Nuclear size as estrogen-responsive chromatin quality parameter of mouse spermatozoa. General and Comparative Endocrinology 193, 201-209 CrossRefGoogle ScholarPubMed
117. Adeoya-Osiguwa, S. et al. (2003) 17β-Estradiol and environmental estrogens significantly affect mammalian sperm function. Human Reproduction 18, 100-107 CrossRefGoogle ScholarPubMed
118. Ded, L. et al. (2010) Effect of estrogens on boar sperm capacitation in vitro. Reproductive Biology and Endocrinology 8, 87 CrossRefGoogle ScholarPubMed
119. Hess, R.A. (2002) The efferent ductules: structure and functions. In The Epididymis: from Molecules to Clinical Practice (Robaire, B. and Hinton, BT, Eds.), pp. 49-80. Springer, New York CrossRefGoogle Scholar
120. Lee, K.H. et al. (2009) Morphological comparison of the testis and efferent ductules between wild-type and estrogen receptor alpha knockout mice during postnatal development. Journal of Anatomy 214, 916-925 CrossRefGoogle ScholarPubMed
121. Hess, R.A. et al. (1997) A role for oestrogens in the male reproductive system. Nature 390, 509-512 CrossRefGoogle ScholarPubMed
122. Hess, R.A. et al. (2000) Morphologic changes in efferent ductules and epididymis in estrogen receptor-α knockout mice. Journal of Andrology 21, 107-121 CrossRefGoogle ScholarPubMed
123. Toppari, J. (2002) Environmental endocrine disrupters and disorders of sexual differentiation. Seminars in Reproductive Medicine 20, 305-312 CrossRefGoogle ScholarPubMed
124. Sultan, C. et al. (2001) Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation. Molecular and Cellular Endocrinology 178, 99-105 CrossRefGoogle ScholarPubMed
125. Sweeney, T. (2002) Is exposure to endocrine disrupting compounds during fetal/post-natal development affecting the reproductive potential of farm animals? Domestic Animal Endocrinology 23, 203-209 CrossRefGoogle ScholarPubMed
126. Anway, M.D. et al. (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469 CrossRefGoogle ScholarPubMed
127. Sweeney, T. et al. (2007) Postnatal exposure to octylphenol decreases semen quality in the adult ram. Theriogenology 67, 1068-1075 CrossRefGoogle ScholarPubMed
128. Luboshitzky, R. et al. (2002) Seminal plasma androgen/oestrogen balance in infertile men. International Journal of Andrology 25, 345-351 CrossRefGoogle ScholarPubMed
129. Bujan, L. et al. (1993) Increased oestradiol level in seminal plasma in infertile men. Human Reproduction 8, 74-77 CrossRefGoogle ScholarPubMed
130. Zhang, Q. et al. (2010) Assessment of seminal estradiol and testosterone levels as predictors of human spermatogenesis. Journal of Andrology 31, 215-220 CrossRefGoogle ScholarPubMed
131. Zalata, A. et al. (2014) Seminal androgens, oestradiol and progesterone in oligoasthenoteratozoospermic men with varicocele. Andrologia 46, 761-765 CrossRefGoogle ScholarPubMed
132. Marie, E., Galeraud-Denis, I. and Carreau, S. (2001) Increased testicular steroid concentrations in patients with idiopathic infertility and normal FSH levels. Systems Biology in Reproductive Medicine 47, 177-184 Google ScholarPubMed
133. Levalle, O.A. et al. (1994) Serum luteinzing hormone pulsatility and intratesticular testosterone and oestradiol concentrations in idiopathic infertile men with high and normal fofficle stimulating hormone serum concentrations. Human Reproduction 9, 781-787 CrossRefGoogle Scholar
134. Lardone, M. et al. (2010) P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. International Journal of Andrology 33, 650-660 CrossRefGoogle ScholarPubMed
135. Pasquier, G. et al. (2008) Comparison of oestradiol and testosterone levels in peripheral blood and spermatic cord blood in patients with secretory azoospermia. Progres en Urologie: Journal de l'Association Francaise d'Urologie et de la Societe Francaise d'Urologie 18, 663-668 CrossRefGoogle ScholarPubMed
136. Adamopoulos, D. et al. (1984) Hormone levels in the reproductive system of normospermic men and patients with oligospermia and varicocele. Journal of Clinical Endocrinology and Metabolism 59, 447-452 CrossRefGoogle ScholarPubMed
137. Pavlovich, C.P. et al. (2001) Evidence of a treatable endocrinopathy in infertile men. The Journal of Urology 165, 837-841 CrossRefGoogle ScholarPubMed
138. Schlegel, P.N. (2012) Aromatase inhibitors for male infertility. Fertility and Sterility 98, 1359-1362 CrossRefGoogle ScholarPubMed
139. Lewis-Wambi, J.S. and Jordan, V.C. (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit. Breast Cancer Research 11, 206 CrossRefGoogle ScholarPubMed
140. Lucas, T.F. et al. (2008) 17beta-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells. Biology of Reproduction 78, 101-114 CrossRefGoogle Scholar
141. Simoes, V.L. et al. (2013) Regulation of apoptotic signaling pathways by 5alpha-dihydrotestosterone and 17beta-estradiol in immature rat Sertoli cells. Journal of Steroid Biochemistry and Molecular Biology 135, 15-23 CrossRefGoogle ScholarPubMed
142. Chaki, S. et al. (2006) Estradiol treatment induces testicular oxidative stress and germ cell apoptosis in rats. Apoptosis 11, 1427-1437 CrossRefGoogle ScholarPubMed
143. Kaushik, M. et al. (2010) Effect of chronic oestrogen administration on androgen receptor expression in reproductive organs and pituitary of adult male rat. Andrologia 42, 193-205 CrossRefGoogle ScholarPubMed
144. Blanco-Rodriguez, J. and Martinez-Garcia, C. (1997) Apoptosis pattern elicited by oestradiol treatment of the seminiferous epithelium of the adult rat. Journal of Reproduction and Fertility 110, 61-70 CrossRefGoogle ScholarPubMed
145. Blanco-Rodríguez, J. and Martínez-García, C. (1996) Further observations on the early events that contribute to establishing the morphological pattern shown by the oestradiol suppressed testis. Tissue and Cell 28, 387-399 CrossRefGoogle ScholarPubMed
146. Nair, R. and Shaha, C. (2003) Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. Journal of Biological Chemistry 278, 6470-6481 CrossRefGoogle ScholarPubMed
147. Correia, S. et al. (2014) Estrogenic regulation of testicular expression of stem cell factor and c-kit: implications in germ cell survival and male fertility. Fertility and Sterility 102, 299-306 CrossRefGoogle ScholarPubMed
148. Mishra, D.P. and Shaha, C. (2005) Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: role of superoxide and nitric oxide. Journal of Biological Chemistry 280, 6181-6196 CrossRefGoogle ScholarPubMed
149. Lassurguère, J. et al. (2003) Time-and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture. Toxicological Sciences 73, 160-169 CrossRefGoogle ScholarPubMed
150. Oltval, Z.N., Milliman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 74, 609-619 CrossRefGoogle Scholar
151. Turner, T.T. and Lysiak, J.J. (2008) Oxidative stress: a common factor in testicular dysfunction. Journal of Andrology 29, 488-498 CrossRefGoogle ScholarPubMed
152. Rossi, P. et al. (2000) Role of c-kit in mammalian spermatogenesis. Journal of Endocrinological Investigation 23, 609-615 CrossRefGoogle ScholarPubMed
153. Blanco-Rodriguez, J. and Martinez-Garcia, C. (1996) Induction of apoptotic cell death in the seminiferous tubule of the adult rat testis: assessment of the germ cell types that exhibit the ability to enter apoptosis after hormone suppression by oestradiol treatment. International Journal of Andrology 19, 237-247 CrossRefGoogle ScholarPubMed