Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T05:51:08.836Z Has data issue: false hasContentIssue false

New molecular targets in angiogenic vessels of glioblastoma tumours

Published online by Cambridge University Press:  07 August 2008

Joshua C. Anderson
Affiliation:
Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Braden C. McFarland
Affiliation:
Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama, USA. Department of Pathology, Division of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Candece L. Gladson*
Affiliation:
Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama, USA. Department of Pathology, Division of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
*
*Corresponding author: Candece L. Gladson, Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, LHRB 567, 701 South 19th Street, Birmingham, AL 35294, USA. Tel: +1 205 975 7847; Fax: +1  205 934 7346; E-mail: [email protected]

Abstract

Antiangiogenesis approaches have the potential to be particularly effective in the treatment of glioblastoma tumours. These tumours exhibit extremely high levels of neovascularisation, which may contribute to their extremely aggressive behaviour, not only by providing oxygenation and nutrition, but also by establishing a leaky vasculature that lacks a blood–brain barrier. This leaky vasculature enables migration of tumour cells, as well as the build up of fluid, which exacerbates tissue damage due to increased intracranial pressure. Here, we discuss the considerable progress that has been made in the identification of the pro- and antiangiogenic factors produced by glioblastoma tumours and the effects of these molecules in animal models of the disease. The safety and efficacy of some of these approaches have now been demonstrated in clinical trials. However, the ability of tumours to overcome these therapies and to re-establish angiogenesis requires further clinical research regarding potential multimodality therapies, as well as basic research into the regulation of angiogenesis by as yet unidentified factors. Optimisation of noninvasive procedures for monitoring of angiogenesis would greatly facilitate such research.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Nabors, L.B. and Fiveash, J. (2005) Treatment of adults with recurrent malignant glioma. Expert Rev Neurother 5, 509-514CrossRefGoogle ScholarPubMed
2Kleihues, P. et al. (2002) The WHO classification of tumors in the nervous system. J Neuropathol Exp Neurol 60, 215-225CrossRefGoogle Scholar
3Hanahan, D. and Folkman, J. (1996) Patterns and emering mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364CrossRefGoogle Scholar
4Folkman, J. (2006) Angiogenesis. Annu Rev Med 57, 1-18CrossRefGoogle ScholarPubMed
5Goldman, C.K. et al. (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells. Mol Cell Biol 4, 121-133CrossRefGoogle ScholarPubMed
6Whitelock, J.M., Murdoch, A.D., Iozzo, R.V. and Underwood, P.A. (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271, 10079-10086CrossRefGoogle ScholarPubMed
7Klagsbrun, M. and D'Amore, P.A. (1996) Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 7, 259-270CrossRefGoogle ScholarPubMed
8Kukk, E. et al. (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122, 3829-3837CrossRefGoogle ScholarPubMed
9Stratmann, A., Machein, M.R. and Plate, K.H. (1997) Anti-angiogenic gene therapy of malignant glioma. Acta Neurochir Suppl 68, 105-110Google ScholarPubMed
10Witmer, A.N. et al. (2002) Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 50, 767-777CrossRefGoogle ScholarPubMed
11Grau, S.J. et al. (2007) Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J Neurooncol 82, 141-150CrossRefGoogle ScholarPubMed
12Witmer, A.N. et al. (2001) VEGFR-3 in adult angiogenesis. J Pathol 195, 490-497CrossRefGoogle ScholarPubMed
13Karcher, S. et al. (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118, 2182-2189CrossRefGoogle ScholarPubMed
14Morrison, R.S. et al. (1994) Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54, 2794-2799Google ScholarPubMed
15Morrison, R.S. et al. (1994) Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 18, 207-216CrossRefGoogle ScholarPubMed
16Ueba, T. et al. (1994) Expression of fibroblast growth factor receptor-1 in human glioma and meningioma tissues. Neurosurgery 34, 221-225CrossRefGoogle ScholarPubMed
17Yamada, S.M. et al. (2002) Fibroblast growth factor receptor FGFR 4 correlated with the malignancy of human astrocytomas. Neurol Res 24, 244-248CrossRefGoogle ScholarPubMed
18Qiao, D. et al. (2003) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 278, 16045-16053CrossRefGoogle ScholarPubMed
19Pintucci, G. et al. (2002) Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 16, 598-600CrossRefGoogle ScholarPubMed
20Simons, M. (2004) Integrative signaling in angiogenesis. Mol Cell Biochem 264, 99-102CrossRefGoogle ScholarPubMed
21Gliki, G., Wheeler-Jones, C. and Zachary, I. (2002) Vascular endothelial growth factor induces protein kinase C PKC-dependent Akt/PKB activation and phosphatidylinositol 3’-kinase-mediates PKC delta phosphorylation: role of PKC in angiogenesis. Cell Biol Int 26, 751-759Google ScholarPubMed
22Kim, S. et al. (2000) Regulation of Angiogenesis in Vivo by Ligation of Integrin alpha5beta1 with the Central Cell-binding Domain of Fibronectin. Am J Pathol 156, 1345-1362CrossRefGoogle ScholarPubMed
23Brooks, P.C., Clark, R.A.F., Cheresh, D.A. (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569-571CrossRefGoogle Scholar
24Gladson, C.L. (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55, 1143-1149CrossRefGoogle ScholarPubMed
25Brat, D.J., Bellail, A.C. and Van Meir, E.G. (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7, 122-133CrossRefGoogle ScholarPubMed
26Gondi, C.S. et al. (2007) Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator uPA receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res 13, 4051-4060CrossRefGoogle ScholarPubMed
27Lakka, S.S., Gondi, C.S. and Rao, J.S. (2005) Proteases and glioma angiogenesis. Brain Pathol 15, 327-341CrossRefGoogle ScholarPubMed
28Kaur, B. et al. (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7, 134-153CrossRefGoogle ScholarPubMed
29Liu, L. and Simon, M.C. (2004) Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3, 492-497CrossRefGoogle ScholarPubMed
30Overall, C.M. and Kleifeld, O. (2006) Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6, 227-239CrossRefGoogle ScholarPubMed
31Belotti, D. et al. (2003) Matrix metalloproteinases MMP9 and MMP2 induce the release of vascular endothelial growth factor VEGF by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63, 5224-5229Google ScholarPubMed
32Bergers, G. and Song, S. (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7, 452-464CrossRefGoogle ScholarPubMed
33Metheny-Barlow, L.J. and Li, L.Y. (2003) The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res 13, 309-317CrossRefGoogle ScholarPubMed
34Baluk, P. et al. (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163, 1801-1815CrossRefGoogle ScholarPubMed
35Hood, J.D. et al. (2003) Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162, 933-943CrossRefGoogle ScholarPubMed
36Ceradini, D.J. et al. (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858-864CrossRefGoogle ScholarPubMed
37Annabi, B. et al. (2004) Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J Cell Biochem 91, 1146-1158CrossRefGoogle ScholarPubMed
38Aghi, M. et al. (2006) Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 66, 9054-9064CrossRefGoogle ScholarPubMed
39Salvucci, O. et al. (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99, 2703-2711CrossRefGoogle ScholarPubMed
40Rempel, S.A. et al. (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6, 102-111Google ScholarPubMed
41Rubin, J.B. et al. (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 100, 13513-13518CrossRefGoogle ScholarPubMed
42Vitolo, D. et al. (1996) Expression of adhesion molecules and extracellular matrix proteins in glioblastomas: relation to angiogenesis and spread. Histopathology 28, 521-528CrossRefGoogle ScholarPubMed
43Lossinsky, A.S. et al. (1995) Intercellular adhesion molecule-1 ICAM-1 upregulation in human brain tumors as an expression of increased blood-brain barrier permeability. Brain Pathol 5, 339-344CrossRefGoogle ScholarPubMed
44Boucher, Y., Leunig, M. and Jain, R.K. (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res 56, 4264-4266Google ScholarPubMed
45Adams, J.C. and Lawler, J. (2004) The thrombospondins. Int J Biochem Cell Biol 36, 961-968CrossRefGoogle ScholarPubMed
46Lawler, J. (2002) Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6, 1-12CrossRefGoogle ScholarPubMed
47Jimenez, B. et al. (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41-48CrossRefGoogle ScholarPubMed
48Volpert, O.V. et al. (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8, 349-357CrossRefGoogle ScholarPubMed
49Nor, J.E. et al. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37, 209-218CrossRefGoogle Scholar
50Simantov, R. and Silverstein, R.L. (2003) CD36: critical anti-angiogenic receptor. Front Biosci 8, 874-882CrossRefGoogle ScholarPubMed
51Bottcher, A. et al. (2006) Involvement of phosphatidylserine, alphavbeta3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages. Arthritis Rheum 54, 927-938CrossRefGoogle ScholarPubMed
52Elzie, C.A. and Murphy-Ullrich, J.E. (2004) The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 36, 1090-1101CrossRefGoogle ScholarPubMed
53Armstrong, L.C. et al. (2002) Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13, 1893-1905CrossRefGoogle ScholarPubMed
54Anderson, J.C., Grammer, J.R., Wang, W., Nabors, L.B., Henkin, J., Stewart, J.E. Jr., and Gladson, C.L. (2007) ABT-510, a Modified Type 1 Repeat Peptide of Thrombospondin, Inhibits Malignant Glioma Growth In Vivo by Inhibiting Angiogenesis. Cancer Biol Ther 6, 454-462CrossRefGoogle ScholarPubMed
55Tenan, M. et al. (2000) Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191, 1789-1798CrossRefGoogle ScholarPubMed
56Harada, H. et al. (2003) Introduction of wild-type p53 enhances thrombospondin-1 expression in human glioma cells. Cancer Lett 191, 109-119CrossRefGoogle ScholarPubMed
57Pijuan-Thompson, V. et al. (1999) Retinoic acid alters the mechanism of attachment of malignant astrocytoma and neuroblastoma cells to thrombospondin-1. Exp Cell Res 2491, 86-101CrossRefGoogle Scholar
58Kawataki, T. et al. (2000) Correlation of thrombospondin-1 and transforming growth factor-beta expression with malignancy of glioma. Neuropathology 20, 161-169CrossRefGoogle ScholarPubMed
59Streit, M. et al. (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci U S A 96, 14888-14893CrossRefGoogle ScholarPubMed
60Fears, C.Y. et al. (2005) Low-density lipoprotein receptor-related protein contributes to the antiangiogenic activity of thrombospondin-2 in a murine glioma model. Cancer Res 65, 9338-9346CrossRefGoogle Scholar
61Kazuno, M. et al. Thrombospondin-2 TSP2 expression is inversely correlated with vascularity in glioma. Eur J Cancer 35, 502-506CrossRefGoogle Scholar
62Nishimori, H. et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15, 2145-2150CrossRefGoogle Scholar
63Kaur, B. et al. (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24, 3632-3642CrossRefGoogle ScholarPubMed
64Kaur, B. et al. (2003) Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 162, 19-27CrossRefGoogle ScholarPubMed
65Koh, J.T. et al. (2004) Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res 294, 172-184CrossRefGoogle ScholarPubMed
66Kang, X. et al. (2006) Antiangiogenic activity of BAI1 in vivo: implications for gene therapy of human glioblastomas. Cancer Gene Ther 13, 385-392CrossRefGoogle ScholarPubMed
67Strik, H.M. et al. (2001) Localization of endostatin in rat and human gliomas. Cancer 915, 1013-10193.0.CO;2-Q>CrossRefGoogle Scholar
68Morimoto, T. et al. (2002) Increased levels of tissue endostatin in human malignant gliomas. Clin Cancer Res 8, 2933-2988Google ScholarPubMed
69Folkman, J. (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312, 594-607CrossRefGoogle ScholarPubMed
70Heljasvaara, R. et al. (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307, 292-304CrossRefGoogle ScholarPubMed
71Shi, H. et al. (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110, 2899-2906CrossRefGoogle ScholarPubMed
72Sudhakar, A. et al. (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100, 4766-4771CrossRefGoogle ScholarPubMed
73Barnett, F.H. et al. (2004) Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther 11, 1283-1289CrossRefGoogle ScholarPubMed
74Sorensen, D.R. et al. (2002) Endostatin reduces vascularization, blood flow, and growth in a rat gliosarcoma. Neuro Oncol 4, 1-8CrossRefGoogle Scholar
75Maeshima, Y. et al. (2000) Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 275, 21340-21348CrossRefGoogle ScholarPubMed
76Maeshima, Y., Colorado, P.C. and Kalluri, R. (2000) Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem 275, 23745-23750CrossRefGoogle ScholarPubMed
77Mundel, T.M. and Kalluri, R. (2007) Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 74, 85-89CrossRefGoogle ScholarPubMed
78O'Reilly, M.S. et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328CrossRefGoogle ScholarPubMed
79Wahl, M.L. et al. (2005) Angiostatin's molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96, 242-261CrossRefGoogle ScholarPubMed
80Kirsch, M. et al. (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58, 4654-4659Google ScholarPubMed
81Joe, Y.A. et al. (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int J Cancer 82, 694-6993.0.CO;2-C>CrossRefGoogle ScholarPubMed
82Tarui, T., Miles, L.A. and Takada, Y. (2001) Specific interaction of angiostatin with integrin alphavbeta3 in endothelial cells. J Biol Chem 276, 39562-39568CrossRefGoogle ScholarPubMed
83Chekenya, M. et al. (2002) NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by sequestering angiostatin. FASEB J 16, 586-588CrossRefGoogle ScholarPubMed
84Cao, Y. et al. (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272, 22924-22928CrossRefGoogle ScholarPubMed
85Davidson, D.J. et al. (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65, 4663-4672CrossRefGoogle ScholarPubMed
86Lu, H. et al. (1999) Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258, 668-673CrossRefGoogle ScholarPubMed
87Zhang, D. et al. (2001) Intravitreal injection of plasminogen kringle 5, an endogenous angiogenic inhibitor, arrests retinal neovascularization in rats. Diabetologia 44, 757-765CrossRefGoogle ScholarPubMed
88Perri, S.R. et al. (2005) Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Res 65, 8359-8365CrossRefGoogle ScholarPubMed
89Eklund, L. and Olsen, B.R. (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312, 630-641CrossRefGoogle ScholarPubMed
90Zagzag, D. et al. (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80, 837-849CrossRefGoogle ScholarPubMed
91Stratmann, A., Risau, W. and Plate, K.H. (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153, 1459-1466CrossRefGoogle ScholarPubMed
92Groft, L.L. et al. (2001) Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. Br J Cancer 85, 55-63CrossRefGoogle ScholarPubMed
93Tanaka, T. et al. (1997) Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat Med 3, 437-442CrossRefGoogle ScholarPubMed
94Bikfalvi, A. (2004) Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol 68, 1017-1021CrossRefGoogle ScholarPubMed
95Mongiat, M. et al. (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278, 4238-4249CrossRefGoogle Scholar
96Bix, G. et al. (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. J Cell Biol 166, 97-109CrossRefGoogle ScholarPubMed
97Brooks, P.C. et al. (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391-400CrossRefGoogle ScholarPubMed
98Guan, M. et al. (2003) Loss of pigment epithelium derived factor expression in glioma progression. J Clin Pathol 56, 277-282CrossRefGoogle ScholarPubMed
99Zhang, T. et al. (2007) Pigment epithelium-derived factor inhibits glioma cell growth in vitro and in vivo. Life Sci 81, 1256-1263CrossRefGoogle ScholarPubMed
100Willett, C.G. et al. (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10, 145-147CrossRefGoogle ScholarPubMed
101Jain, R.K. (2005) Anti-angiogenic therapy for cancer: current and emerging concepts. Oncology 19, 7-16Google Scholar
102Jain, R.K. et al. (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8, 610-622CrossRefGoogle ScholarPubMed
103Batchelor, T.T. et al. (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83-95CrossRefGoogle ScholarPubMed
104Winkler, F. et al. (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553-563Google ScholarPubMed
105Stefanik, D.F. et al. (1991) Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 51, 5760-5765Google ScholarPubMed
106Reiher, F.K. et al. (2002) Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimectics. Int J Cancer 98, 682-689CrossRefGoogle Scholar
107Haviv, F. et al. (2005) Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis and optimization of pharmacokinetics and biuological activities. J Med Chem 48, 2838-2846CrossRefGoogle ScholarPubMed
108Barnwell, J.W. et al. (1989) A human 88-kD membrane glycoprotein CD36 function, in vitro as a receptor for a cytoadherence ligand and Plasmodium falciparon-infected eerythrocytes. J Clin Invest 84, 765-772CrossRefGoogle Scholar
109Husemann, J. et al. (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40, 195-205CrossRefGoogle ScholarPubMed
110Febbraio, M., Hajjar, D.P. and Silverstein, R.L. (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108, 785-791CrossRefGoogle Scholar
111Bogdanov, A. et al. (1999) Chandrasekaran L, Krutzsch HC, Roberts DD, Treatment of experimental brain tumors with trombospondin-1 derived peptides: an in vivo imaging study. Neoplasia 1, 438-445CrossRefGoogle ScholarPubMed
112de Fraipont, F. et al. (2004) Expression of the thrombospondin 1 fragment 167-569 in C6 glioma cells stimulates tumorigenicity despite reduced neovascularization. Oncogene 23, 3642-3649CrossRefGoogle ScholarPubMed
113Kragh, M. et al. (2002) Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma. Cancer Res 62, 1191-1195Google Scholar
114Yang, Q. et al. (2007) Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 67, 1716-1724CrossRefGoogle ScholarPubMed
115Quesada, A. et al. (2005) In vivo up regulation of CD95 and CD95L causes synergistic inhibition of angiogenesis by TSP-1 peptide and metronomic doxorubicin treatment. Cell Death Diff 12, 549-558CrossRefGoogle ScholarPubMed
116Kang, J.H. et al. (2007) Inhibition of trichostatin A-induced antiangiogenesis by small-interfering RNA for thrombospondin-1. Exp Mol Med 39, 402-411CrossRefGoogle ScholarPubMed
117Hoekstra, R. et al. (2005) Phase I safety, pharmacokinetic and pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer. J Clin Oncol 23, 5188-5197CrossRefGoogle ScholarPubMed
118Markovic, S.N. et al. (2007) A phase II study of ABT-510 thrombospondin-1 analog for the treatment of metastatic melanoma. Am J Clin Oncol 30, 303-309CrossRefGoogle ScholarPubMed
119Gingras, M.C. et al. (1995) Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 57, 143-153CrossRefGoogle ScholarPubMed
120Nabors, L.B. et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 25, 1651-1657CrossRefGoogle Scholar
121Chatterjee, S. et al. (2000) Human malignant glioma therapy using anti-alphavbeta3 integrin agents. J Neurooncol 46, 135-144CrossRefGoogle Scholar
122Yamada, S. et al. (2006) Effect of the angiogenesis inhibitor Cilengitide EMD 121974 on glioblastoma growth in nude mice. Neurosurgery 59, 1304-1312CrossRefGoogle ScholarPubMed
123Reinmuth, N. et al. (2003) Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63, 2079-2087Google ScholarPubMed
124Janssen, M.L. et al. (2002) Tumor targeting with radiolabeled alphavbeta3 integrin binding peptides in a nude mouse model. Cancer Res 62, 6146-6151Google Scholar
125Li, J. and Lee, A.S. (2006) Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6, 45-54CrossRefGoogle ScholarPubMed
126Shin, B.K. et al. (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abumdance of proteins with chaperone function. J Biol Chem 278, 7607-7616CrossRefGoogle ScholarPubMed
127Arap, M.A. et al. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275-284CrossRefGoogle ScholarPubMed
128Bini, L. et al. (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 1815, 2832-2841CrossRefGoogle Scholar
129Ilic, D. et al. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-544Google ScholarPubMed
130Haskell, H. et al. (2003) Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res 9, 2157-2165Google ScholarPubMed
131Cox, B.D. et al. (2006) New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem 99, 35-52CrossRefGoogle ScholarPubMed
132Parsons, J.T. (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116, 1409-1416CrossRefGoogle ScholarPubMed
133Zhao, J., Zheng, C. and Guan, J. (2000) Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci 113, 3063-3072CrossRefGoogle ScholarPubMed
134Zhao, J. et al. (2003) Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 11, 1503-1515CrossRefGoogle ScholarPubMed
135Ding, Q. et al. (2005) p27Kip1 and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem 280, 6802-6815CrossRefGoogle ScholarPubMed
136Owen, J.D. et al. (1999) Induced focal adhesion kinase FAK expression in FAK null cells enhances cell spreading and migration requiring bothe auto- and activation lo9op phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19, 4806-4818CrossRefGoogle Scholar
137Natarajan, M. et al. (2006) HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene 25, 1721-1732CrossRefGoogle ScholarPubMed
138Shi, Q. et al. (2007) A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog 46, 488-496CrossRefGoogle ScholarPubMed
139Slack-Davis, J.K. et al. (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282, 14845-14852CrossRefGoogle ScholarPubMed
140Lipinski, C.A. et al. (2003) Differential role of proline-rich tyrosine kinase 2 and focal adhesion kinase in determining glioblastoma migration and proliferation. Mol Cancer Res 1, 323-332Google ScholarPubMed
141Lipinski, C.A. et al. (2005) The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 7, 435-445CrossRefGoogle ScholarPubMed
142Bach, F., Uddin, F.J. and Burke, D. (2007) Angiopoietins in malignancy. Eur J Surg Oncol 33, 7-15CrossRefGoogle ScholarPubMed
143Lobov, I.B., Brooks, P.C. and Lang, R.A. (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99, 11205-11210CrossRefGoogle ScholarPubMed
144Holash, J. et al. (1999) Vessel Cooption, Regression, and Growth in Tumors Mediated by Angiopoietins and VEGF. Science 284, 1994-1998CrossRefGoogle ScholarPubMed
145Carlson, T.R. et al. (2001) Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276, 26516-26525CrossRefGoogle Scholar
146Chekenya, M. et al. (2002) The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 28, 367-380CrossRefGoogle ScholarPubMed
147Wang, D., Anderson, J.C. and Gladson, C.L. (2005) The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 15, 318-326CrossRefGoogle ScholarPubMed
148Schrappe, M. et al. (1991) Correlation of chondroitin sulfate proteoglycan expression on proliferation brain capillary endothelial cells wiht the malignant phenotype of astroglial cells. Cancer Res 51, 4986-4993Google Scholar
149Hellstrom, M. et al. (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047-3055CrossRefGoogle ScholarPubMed
150Guo, P. et al. (2003) Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162, 1083-1093CrossRefGoogle ScholarPubMed
151Hermanson, M. et al. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 56, 164-171Google Scholar
152Ding, Q. et al. (2003) The pattern of enhancement of Src kinase activity on platelet-derived growth factor stimulation of glioblastoma cells is affected by the integrin engaged. J Biol Chem 278, 39882-39891CrossRefGoogle ScholarPubMed
153Bergers, G. et al. (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111, 1287-1295CrossRefGoogle ScholarPubMed
154Hasumi, Y. et al. (2007) Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. Int J Cancer 121, 2606-2614CrossRefGoogle ScholarPubMed
155Wen, P.Y. et al. (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas, North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 12, 4899-4907CrossRefGoogle ScholarPubMed
156Reardon, D.A. et al. (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23, 9359-9568CrossRefGoogle ScholarPubMed
157Shaked, Y. et al. (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101-111Google ScholarPubMed
158Dome, B. et al. (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66, 7341-7347CrossRefGoogle ScholarPubMed
159Jain, R.K. and Duda, D.G. (2003) Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell 3, 515-516CrossRefGoogle ScholarPubMed
160Zernecke, A. et al. (2005) SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res 96, 784-791CrossRefGoogle ScholarPubMed
161Tachibana, K. et al. (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591-594CrossRefGoogle ScholarPubMed
162Castellani, P. et al. (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59, 612-618CrossRefGoogle Scholar
163Mariani, G. et al. (1997) Tumor targeting potential of the monoclonal antibody BC-1 against oncofetal fibronectin in nude mice bearing human tumor implants. Cancer 80 Suppl, 2378-23843.0.CO;2-7>CrossRefGoogle ScholarPubMed
164Tarli, L. et al. (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94, 192-198CrossRefGoogle ScholarPubMed
165Zagzag, D. et al. (1996) Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56, 182-189Google ScholarPubMed
166ZagZag, D. et al. (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62, 2660-2668Google ScholarPubMed
167Huang, W. et al. (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61, 8586-8594Google ScholarPubMed
168Orend, G. et al. (2003) Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 22, 3917-3926CrossRefGoogle ScholarPubMed
169Akabani, G. et al. (2005) Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J Nucl Med 46, 1042-1051Google ScholarPubMed
170Reardon, D.A. et al. (2002) Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20, 1389-1397CrossRefGoogle Scholar
171Jones, P.L. and Jones, F.S. (2000) Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19, 581-596CrossRefGoogle ScholarPubMed
172Duda, D.G. et al. (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2, 805-810CrossRefGoogle ScholarPubMed
173Mancuso, P. et al. (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97, 3658-3661CrossRefGoogle ScholarPubMed
174Mancuso, P. et al. (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108, 452-459CrossRefGoogle ScholarPubMed
175Barrett, T. et al. (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26, 235-249CrossRefGoogle ScholarPubMed
176Akella, N.S. et al. (2004) Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 20, 913-922CrossRefGoogle ScholarPubMed
177Hawkins, B.T. and Egleton, R.D. (2008) Pathophysiology of the blood-brain barrier: animal models and methods. Curr Top Dev Biol 80, 277-309CrossRefGoogle ScholarPubMed
178Ballabh, P., Braun, A. and Nedergaard, M. (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1-13CrossRefGoogle ScholarPubMed
179Pardridge, W.M. et al. (1997) Brain microvascular and astrocyte localization of P-glycoprotein. J Neurochem 68, 1278-1285CrossRefGoogle ScholarPubMed
180Claes, A. et al. (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7, 71-78CrossRefGoogle ScholarPubMed
181Muldoon, L.L. et al. (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25, 2295-2305CrossRefGoogle ScholarPubMed
182D'Amato, R.J. et al. (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91, 4082-4085CrossRefGoogle ScholarPubMed
183Ryu, J.K. and McLarnon, J.G. (2008) Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-alpha in an animal model of inflamed Alzheimer's disease brain. Neurobiol Dis 29, 254-266CrossRefGoogle Scholar
184Ma, J. et al. (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61, 5491-5498Google ScholarPubMed
185Murphy, S. et al. (2007) Enhancement of cisplatin efficacy by thalidomide in a 9L rat gliosarcoma model. J Neurooncol 85, 181-189CrossRefGoogle Scholar
186Pradilla, G. et al. (2005) Local delivery of a synthetic endostatin fragment for the treatment of experimental gliomas. Neurosurgery 57, 1032-1040CrossRefGoogle ScholarPubMed
187Goudar, R.K. et al. (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 AEE788 and the mammalian target of rapamycin RAD001 offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4, 101-112CrossRefGoogle ScholarPubMed
188Vredenburgh, J.J et al. (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13, 1253-1259CrossRefGoogle ScholarPubMed
189Baumann, F. et al. (2004) Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol 67, 191-200CrossRefGoogle ScholarPubMed
190Fine, H.A. et al. (2003) Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 21, 2299-2304CrossRefGoogle ScholarPubMed
191Kemper, E.M. et al. (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30, 415-423CrossRefGoogle ScholarPubMed
192Filleur, S. et al. (2001) In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects. Genes Dev 15, 1373-1382CrossRefGoogle ScholarPubMed
193Moffat, B.A. et al. (2006) Inhibition of vascular endothelial growth factor VEGF-A causes a paradoxical increase in tumor blood flow and up-regulation of VEGF-D. Clin Cancer Res 12, 1525-1532CrossRefGoogle ScholarPubMed
194Leenders, W.P. et al. (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10, 6222-6230CrossRefGoogle ScholarPubMed
195Kunkel, P. et al. (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61, 6624-6628Google ScholarPubMed
196Casanovas, O. et al. (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299-309CrossRefGoogle ScholarPubMed
197Assanah, M. et al. (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26, 6781-6790CrossRefGoogle ScholarPubMed
198Bello, L. et al. (2001) Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 61, 7501-7506Google ScholarPubMed
199Schmidt, N.O. et al. (2004) Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model. Clin Cancer Res 10, 1255-1262CrossRefGoogle Scholar
200Takahashi, J.A. et al. (1991) Inhibition of cell growth and tumorigenesis of human glioblastoma cells by a neutralizing antibody against human basic fibroblast growth factor. FEBS Lett 288, 65-71CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The emedicine website has a comprehensive review on glioblastoma multiforme:

Jain, R.K. et al. (2007) Angiogenesis in brain tumours. Nat. Rev. Neurosci 8, 610-622CrossRefGoogle ScholarPubMed
Folkman, J. (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273-286CrossRefGoogle ScholarPubMed
Jain, R.K. et al. (2007) Angiogenesis in brain tumours. Nat. Rev. Neurosci 8, 610-622CrossRefGoogle ScholarPubMed
Folkman, J. (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273-286CrossRefGoogle ScholarPubMed