Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T21:56:43.041Z Has data issue: false hasContentIssue false

Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments

Published online by Cambridge University Press:  04 May 2007

Qian Tao*
Affiliation:
Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong.
Anthony T.C. Chan*
Affiliation:
Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong.
*
Corresponding authors: Qian Tao, Rm 315, Cancer Center, PWH, Chinese University of Hong Kong, Shatin, Hong Kong. Tel:  +852 2632 1340; Fax:  +852 2648 8842; E-mail: [email protected]
Anthony T.C. Chan, Department of Clinical Oncology, Chinese University of Hong Kong, Shatin, Hong Kong. Tel:  +852 2632 2119; Fax:  +852 2649 7426; E-mail: [email protected].

Abstract

Nasopharyngeal carcinoma (NPC) is a prevalent tumour in southern China and southeast Asia, particularly in the Cantonese population, where its incidence has remained high for decades. Recent studies have demonstrated that the aetiology of NPC is complex, involving multiple factors including genetic susceptibility, infection with the Epstein–Barr virus (EBV) and exposure to chemical carcinogens. During development of the disease, viral infection and multiple somatic genetic and epigenetic changes synergistically disrupt normal cell function, thus contributing to NPC pathogenesis. NPC is highly radiosensitive and chemosensitive, but treatment of patients with locoregionally advanced disease remains problematic. New biomarkers for NPC, including EBV DNA copy number or methylation of multiple tumour suppressor genes, which can be detected in serum and nasopharyngeal brushings, have been developed for the molecular diagnosis of this tumour. Meanwhile, new therapeutic strategies such as intensity-modulated radiation therapy and immuno- and epigenetic therapies might lead to more specific and effective treatments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Vokes, E.E., Liebowitz, D.N. and Weichselbaum, R.R. (1997) Nasopharyngeal carcinoma. Lancet 350, 1087-1091CrossRefGoogle ScholarPubMed
2Yu, M.C. and Yuan, J.M. (2002) Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12, 421-429Google Scholar
3Ho, J.H.C. (1990) Epidemiology of nasopharyngeal carcinoma (NPC). In Epstein-Barr Virus and Human Disease Ablashi, D.V. et al. , XLI-XLIV, Humana Press, Clifton, NJ, USAGoogle Scholar
4Devi, B.C. et al. (2004) High incidence of nasopharyngeal carcinoma in native people of Sarawak, Borneo Island. Cancer Epidemiol Biomarkers Prev 13, 482-486CrossRefGoogle ScholarPubMed
5Lee, A.W. et al. (2003) Changing epidemiology of nasopharyngeal carcinoma in Hong Kong over a 20-year period (1980-99): an encouraging reduction in both incidence and mortality. Int J Cancer 103, 680-685CrossRefGoogle Scholar
6Jia, W.H. et al. (2006) Trends in incidence and mortality of nasopharyngeal carcinoma over a 20-25 year period (1978/1983-2002) in Sihui and Cangwu counties in southern China. BMC Cancer 6, 178CrossRefGoogle Scholar
7Sham, J.S.T. et al. (1990) Detection of subclinical nasopharyngeal carcinoma by fibreoptic endoscopy and multiple biopsy. Lancet 335, 371-374Google Scholar
8Cheung, F.M. et al. (2004) Nasopharyngeal intraepithelial lesion: latent Epstein-Barr virus infection with malignant potential. Histopathology 45, 171-179CrossRefGoogle ScholarPubMed
9Pak, M.W. et al. (2002) Nasopharyngeal carcinoma in situ (NPCIS)–pathologic and clinical perspectives. Head Neck 24, 989-995CrossRefGoogle ScholarPubMed
10Pathmanathan, R. et al. (1995) Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333, 693-698CrossRefGoogle ScholarPubMed
11Marks, J.E., Phillips, J.L. and Menck, H.R. (1998) The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 83, 582-5883.0.CO;2-R>CrossRefGoogle Scholar
12Wei, W.I. and Sham, J.S. (2005) Nasopharyngeal carcinoma. Lancet 365, 2041-2054CrossRefGoogle ScholarPubMed
13Lo, K.W., To, K.F. and Huang, D.P. (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5, 423-428CrossRefGoogle ScholarPubMed
14Young, L.S. and Rickinson, A.B. (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768CrossRefGoogle Scholar
15Kinzler, K.W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159-170Google Scholar
16Raab-Traub, N. (2002) Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12, 431-441CrossRefGoogle ScholarPubMed
17Tao, Q. et al. (2006) Epstein-Barr virus (EBV) and its associated human cancers - Genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci 11, 2672-2713CrossRefGoogle ScholarPubMed
18Jia, W.H. et al. (2004) Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China. Cancer 101, 363-369CrossRefGoogle ScholarPubMed
19Zeng, Y.X. and Jia, W.H. (2002) Familial nasopharyngeal carcinoma. Semin Cancer Biol 12, 443-450CrossRefGoogle ScholarPubMed
20Lu, S.J. et al. (1990) Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346, 470-471CrossRefGoogle Scholar
21Hildesheim, A. et al. (2002) Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 94, 1780-1789CrossRefGoogle Scholar
22Feng, B.J. et al. (2002) Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 31, 395-399CrossRefGoogle ScholarPubMed
23Xiong, W. et al. (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64, 1972-1974Google Scholar
24Mirvish, S.S. (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93, 17-48CrossRefGoogle ScholarPubMed
25Ho, J.H.C. (1972) Current knowledge of the epidemiology of nasopharyngeal carcinoma. In Oncogenesis and Herpesviruses Biggs, P., de The, G. and Payne, L., 357-366, IARC, Lyon, FranceGoogle Scholar
26Huang, D.P. et al. (1978) Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish. IARC Sci Publ 315-328Google ScholarPubMed
27Yu, M.C. et al. (1989) Induction of malignant nasal cavity tumours in Wistar rats fed Chinese salted fish. Br J Cancer 60, 198-201CrossRefGoogle ScholarPubMed
28Gallicchio, L. et al. (2006) Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: A systematic review. Int J Cancer 119, 1125-1135CrossRefGoogle ScholarPubMed
29Armstrong, R.W. et al. (2000) Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat. Int J Epidemiol 29, 991-998Google Scholar
30Hildesheim, A. et al. (2001) Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 10, 1145-1153Google ScholarPubMed
31Li, W. et al. (2006) Occupational risk factors for nasopharyngeal cancer among female textile workers in Shanghai, China. Occup Environ Med 63, 39-44CrossRefGoogle ScholarPubMed
32zur Hausen, H. et al. (1970) EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas of the nasopharynx. Nature 228, 1056-1058CrossRefGoogle ScholarPubMed
33Tao, Q. et al. (1995) Epstein-Barr-virus-infected nasopharyngeal intraepithelial lymphocytes. Lancet 345, 1309-1310CrossRefGoogle ScholarPubMed
34Tao, Q. et al. (1995) Evidence for lytic infection by Epstein-Barr virus in mucosal lymphocytes instead of nasopharyngeal epithelial cells in normal individuals. J Med Virol 45, 71-77CrossRefGoogle ScholarPubMed
35Nicholls, J.M. et al. (1997) The association of squamous cell carcinomas of the nasopharynx with Epstein-Barr virus shows geographical variation reminiscent of Burkitt's lymphoma. J Pathol 183, 164-1683.0.CO;2-J>CrossRefGoogle ScholarPubMed
36Pathmanathan, R. et al. (1995) Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol 146, 1355-1367Google ScholarPubMed
37Zhang, J.X. et al. (1998) Epstein-Barr virus expression within keratinizing nasopharyngeal carcinoma. J Med Virol 55, 227-2333.0.CO;2-3>CrossRefGoogle ScholarPubMed
38Sam, C.K. et al. (1993) Analysis of Epstein-Barr virus infection in nasopharyngeal biopsies from a group at high risk of nasopharyngeal carcinoma. Int J Cancer 53, 957-962CrossRefGoogle ScholarPubMed
39Murray, P.G. et al. (1998) Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin's disease. Blood 92, 2477-2483CrossRefGoogle Scholar
40Tao, Q. et al. (1995) Epstein-Barr virus is localized in the tumour cells of nasal lymphomas of NK, T or B cell type. Int J Cancer 60, 315-320CrossRefGoogle ScholarPubMed
41Chiang, A.K. et al. (1996) Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int J Cancer 68, 285-2903.0.CO;2-Y>CrossRefGoogle ScholarPubMed
42Cheung, S.T. et al. (1999) Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer 83, 121-126Google Scholar
43Heussinger, N. et al. (2004) Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol 203, 696-699CrossRefGoogle Scholar
44Sheng, W. et al. (2003) Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J Virol 77, 3859-3865CrossRefGoogle ScholarPubMed
45Chen, H.L. et al. (1992) Transcription of BamHI-A region of the EBV genome in NPC tissues and B cells. Virology 191, 193-201CrossRefGoogle ScholarPubMed
46Decaussin, G. et al. (2000) Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res 60, 5584-5588Google ScholarPubMed
47Cochet, C. et al. (1993) Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197, 358-365Google Scholar
48Huang, D.P. et al. (1991) Loss of heterozygosity on the short arm of chromosome 3 in nasopharyngeal carcinoma. Cancer Genet Cytogenet 54, 91-99CrossRefGoogle ScholarPubMed
49Huang, D.P. et al. (1989) Cytogenetics of undifferentiated nasopharyngeal carcinoma xenografts from southern Chinese. Int J Cancer 43, 936-939Google Scholar
50Wong, N. et al. (2003) Molecular cytogenetic characterization of nasopharyngeal carcinoma cell lines and xenografts by comparative genomic hybridization and spectral karyotyping. Cancer Genet Cytogenet 140, 124-132CrossRefGoogle ScholarPubMed
51Lo, K.W. et al. (2000) High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res 60, 3348-3353Google ScholarPubMed
52Huang, D.P. et al. (1994) A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res 54, 4003-4006Google ScholarPubMed
53Huang, Z. et al. (2004) Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer 40, 307-315CrossRefGoogle ScholarPubMed
54Hui, A.B. et al. (2002) Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol 20, 467-473Google ScholarPubMed
55Guo, X. et al. (2002) Identifying cancer-related genes in nasopharyngeal carcinoma cell lines using DNA and mRNA expression profiling analyses. Int J Oncol 21, 1197-1204Google ScholarPubMed
56Rodriguez, S. et al. (2005) Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area. Cancer Genet Cytogenet 157, 140-147CrossRefGoogle ScholarPubMed
57Hui, A.B. et al. (2005) Array-based comparative genomic hybridization analysis identified cyclin D1 as a target oncogene at 11q13.3 in nasopharyngeal carcinoma. Cancer Res 65, 8125-8133CrossRefGoogle ScholarPubMed
58Hurst, C.D. et al. (2004) High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 23, 2250-2263Google Scholar
59Seng, T.J. et al. (2007) The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene 26, 934-944CrossRefGoogle ScholarPubMed
60Ying, J. et al. (2006) Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 20, 1173-1175CrossRefGoogle ScholarPubMed
61Ying, J. et al. (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25, 1070-1080CrossRefGoogle ScholarPubMed
62Effert, P. et al. (1992) Alterations of the p53 gene in nasopharyngeal carcinoma. J Virol 66, 3768-3775Google Scholar
63Sun, Y., Hegamyer, G. and Colburn, N.H. (1993) Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations. Oncogene 8, 791-795Google ScholarPubMed
64Lo, K.W. et al. (1996) Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res 56, 2721-2725Google ScholarPubMed
65Kwong, J. et al. (2002) Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 8, 131-137Google ScholarPubMed
66Lo, K.W. et al. (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61, 3877-3881Google ScholarPubMed
67Qiu, G.H. et al. (2004) The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 23, 4793-4806CrossRefGoogle ScholarPubMed
68Chow, L.S. et al. (2004) RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 109, 839-847CrossRefGoogle ScholarPubMed
69Ying, J. et al. (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11, 6442-6449Google Scholar
70Lung, H.L. et al. (2004) Fine mapping of the 11q22-23 tumor suppressive region and involvement of TSLC1 in nasopharyngeal carcinoma. Int J Cancer 112, 628-635CrossRefGoogle ScholarPubMed
71Kwong, J. et al. (2007) Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes Cancer 46, 171-180CrossRefGoogle ScholarPubMed
72Chan, S.L. et al. (2007) The tumor suppressor Wnt inhibitory factor 1 (WIF1) is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest, Mar 26 [Epub ahead of print]CrossRefGoogle ScholarPubMed
73Henle, G. and Henle, W. (1976) Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer 17, 1-7CrossRefGoogle ScholarPubMed
74Chan, A.T. et al. (2002) Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J Natl Cancer Inst 94, 1614-1619CrossRefGoogle ScholarPubMed
75Lo, Y.M. et al. (2000) Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res 60, 6878-6881Google ScholarPubMed
76Tune, C.E. et al. (1999) Nasopharyngeal brush biopsies and detection of nasopharyngeal cancer in a high-risk population. J Natl Cancer Inst 91, 796-800CrossRefGoogle ScholarPubMed
77Stevens, S.J. et al. (2006) Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer 119, 608-614CrossRefGoogle ScholarPubMed
78Tong, J.H. et al. (2002) Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res 8, 2612-2619Google ScholarPubMed
79Lee, N. et al. (2002) Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53, 12-22CrossRefGoogle ScholarPubMed
80Kam, M.K. et al. (2004) Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int J Radiat Oncol Biol Phys 60, 1440-1450CrossRefGoogle ScholarPubMed
81Rossi, A. et al. (1988) Adjuvant chemotherapy with vincristine, cyclophosphamide, and doxorubicin after radiotherapy in local-regional nasopharyngeal cancer: results of a 4-year multicenter randomized study. J Clin Oncol 6, 1401-1410CrossRefGoogle ScholarPubMed
82Chan, A.T. et al. (1995) A prospective randomized study of chemotherapy adjunctive to definitive radiotherapy in advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 33, 569-577CrossRefGoogle ScholarPubMed
83International Nasopharynx Cancer Study Group. VUMCA I trial (1996) Preliminary results of a randomized trial comparing neoadjuvant chemotherapy (cisplatin, epirubicin, bleomycin) plus radiotherapy vs. radiotherapy alone in stage IV( >  or = N2, M0) undifferentiated nasopharyngeal carcinoma: a positive effect on progression-free survival. Int J Radiat Oncol Biol Phys 35, 463-469CrossRef++or+=+N2,+M0)+undifferentiated+nasopharyngeal+carcinoma:+a+positive+effect+on+progression-free+survival.+Int+J+Radiat+Oncol+Biol+Phys35,+463-469>Google Scholar
84Chua, D.T. et al. (1998) Preliminary report of the Asian-Oceanian Clinical Oncology Association randomized trial comparing cisplatin and epirubicin followed by radiotherapy versus radiotherapy alone in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma. Asian-Oceanian Clinical Oncology Association Nasopharynx Cancer Study Group. Cancer 83, 2270-22833.0.CO;2-T>CrossRefGoogle ScholarPubMed
85Al-Sarraf, M. et al. (1998) Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 16, 1310-1317Google Scholar
86Al-Sarraf, M. et al. (2001) Superiority of five year survival with chemo-radiotherapy vs radiotherapy in patients with locally advanced nasopharyngeal cancer NPC Intergroup 0099. Proc ASCO 20, 905 (Abstract)Google Scholar
87Ma, J. et al. (2001) Results of a prospective randomized trial comparing neoadjuvant chemotherapy plus radiotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma. J Clin Oncol 19, 1350-1357CrossRefGoogle ScholarPubMed
88Chi, K.H. et al. (2002) A phase III study of adjuvant chemotherapy in advanced nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys 52, 1238-1244CrossRefGoogle ScholarPubMed
89Chan, A.T. et al. (2002) Concurrent chemotherapy-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial. J Clin Oncol 20, 2038-2044CrossRefGoogle ScholarPubMed
90Chan, A.T. et al. (2005) Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 97, 536-539CrossRefGoogle ScholarPubMed
91Lin, J.C. et al. (2003) Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 21, 631-637CrossRefGoogle ScholarPubMed
92Kwong, D.L. et al. (2004) Concurrent and adjuvant chemotherapy for nasopharyngeal carcinoma: a factorial study. J Clin Oncol 22, 2643-2653CrossRefGoogle ScholarPubMed
93Wee, J. et al. (2005) Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol 23, 6730-6738CrossRefGoogle ScholarPubMed
94Lee, A.W. et al. (2005) Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9901 Trial by the Hong Kong Nasopharyngeal Cancer Study Group. J Clin Oncol 23, 6966-6975Google Scholar
95Baujat, B. et al. (2006) Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys 64, 47-56CrossRefGoogle ScholarPubMed
96Hui, E.P. et al. (2004) Lung metastasis alone in nasopharyngeal carcinoma: a relatively favorable prognostic group. A study by the Hong Kong Nasopharyngeal Carcinoma Study Group. Cancer 101, 300-306CrossRefGoogle Scholar
97Ma, B.B. and Chan, A.T. (2006) Systemic treatment strategies and therapeutic monitoring for advanced nasopharyngeal carcinoma. Expert Rev Anticancer Ther 6, 383-394Google Scholar
98Chan, A.T. et al. (2005) Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. J Clin Oncol 23, 3568-3576CrossRefGoogle ScholarPubMed
99Rooney, C.M. et al. (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9-13Google Scholar
100Papadopoulos, E.B. et al. (1994) Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 33, 1185-1191Google Scholar
101Khanna, R. et al. (1999) Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci U S A 96, 10391-10396CrossRefGoogle ScholarPubMed
102Chua, D. et al. (2001) Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer 94, 73-80CrossRefGoogle ScholarPubMed
103Comoli, P. et al. (2004) Adoptive transfer of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T cells with in vitro antitumor activity boosts LMP2-specific immune response in a patient with EBV-related nasopharyngeal carcinoma. Ann Oncol 15, 113-117Google Scholar
104Comoli, P. et al. (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol 23, 8942-8949CrossRefGoogle ScholarPubMed
105Straathof, K.C. et al. (2005) Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood 105, 1898-1904CrossRefGoogle ScholarPubMed
106Lin, C.L. et al. (2002) Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 62, 6952-6958Google ScholarPubMed
107Taylor, G.S. et al. (2004) Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 78, 768-778Google Scholar
108Ambinder, R.F., Robertson, K.D. and Tao, Q. (1999) DNA methylation and the Epstein-Barr virus. Semin Cancer Biol 9, 369-375CrossRefGoogle ScholarPubMed
109Tao, Q. and Robertson, K.D. (2003) Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection. Clin Immunol 109, 53-63Google Scholar
110Moore, S.M. et al. (2001) Induction of Epstein-Barr virus kinases to sensitize tumor cells to nucleoside analogues. Antimicrob Agents Chemother 45, 2082-2091CrossRefGoogle ScholarPubMed
111Westphal, E.M. et al. (2000) Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60, 5781-5788Google Scholar
112Cheng, J.C. et al. (2004) Preferential response of cancer cells to zebularine. Cancer Cell 6, 151-158CrossRefGoogle ScholarPubMed
113Abele, R. et al. (1987) The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin Oncol 23, 1921-1924Google Scholar
114van Groeningen, C.J. et al. (1986) Phase I and pharmacokinetic study of 5-aza-2'-deoxycytidine (NSC 127716) in cancer patients. Cancer Res 46, 4831-4836Google Scholar
115Chan, A.T. et al. (2004) Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol 22, 1373-1381Google Scholar
116Franken, M. et al. (1996) Epstein-Barr virus-driven gene therapy for EBV-related lymphomas. Nat Med 2, 1379-1382CrossRefGoogle ScholarPubMed
117Li, J.H. et al. (2002) Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res 62, 171-178Google Scholar
118Chia, M.C. et al. (2004) A conditionally replicating adenovirus for nasopharyngeal carcinoma gene therapy. Mol Ther 9, 804-817CrossRefGoogle ScholarPubMed
119Delecluse, H.J. and Hammerschmidt, W. (2000) The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy. Mol Pathol 53, 270-279Google Scholar
120Ambinder, R.F. et al. (1996) Epstein-Barr virus as a therapeutic target in Hodgkin's disease and nasopharyngeal carcinoma. Semin Cancer Biol 7, 217-226CrossRefGoogle ScholarPubMed
121Minna, J.D., Roth, J.A. and Gazdar, A.F. (2002) Focus on lung cancer. Cancer Cell 1, 49-52CrossRefGoogle ScholarPubMed
122Fries, K.L., Miller, W.E. and Raab-Traub, N. (1996) Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol 70, 8653-8659CrossRefGoogle ScholarPubMed
123Codd, J.D. et al. (1999) A20 RNA expression is associated with undifferentiated nasopharyngeal carcinoma and poorly differentiated head and neck squamous cell carcinoma. J Pathol 187, 549-5553.0.CO;2-O>CrossRefGoogle ScholarPubMed
124Sheu, L.F. et al. (1997) Analysis of bcl-2 expression in normal, inflamed, dysplastic nasopharyngeal epithelia, and nasopharyngeal carcinoma: association with p53 expression. Hum Pathol 28, 556-562CrossRefGoogle ScholarPubMed
125Yu, Y. et al. (2003) Significance of c-Myc and Bcl-2 protein expression in nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 129, 1322-1326CrossRefGoogle ScholarPubMed
126Lu, Q.L. et al. (1993) Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer 53, 29-35Google Scholar
127Lai, J.P. et al. (2002) Association between high initial tissue levels of cyclin d1 and recurrence of nasopharyngeal carcinoma. Laryngoscope 112, 402-408CrossRefGoogle ScholarPubMed
128Xie, L. et al. (2000) Identification of differentially expressed genes in nasopharyngeal carcinoma by means of the Atlas human cancer cDNA expression array. J Cancer Res Clin Oncol 126, 400-406CrossRefGoogle ScholarPubMed
129Chu, W.K. et al. (2006) Dual regulation of the DeltaNp63 transcriptional activity by DeltaNp63 in human nasopharyngeal carcinoma cell. Biochem Biophys Res Commun 342, 1356-1360CrossRefGoogle ScholarPubMed
130Crook, T. et al. (2000) High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19, 3439-3444Google Scholar
131Guo, C. et al. (2006) The expression of p63 is associated with the differential stage in nasopharyngeal carcinoma and EBV infection. J Transl Med 4, 23CrossRefGoogle ScholarPubMed
132Miller, W.E., Earp, H.S. and Raab-Traub, N. (1995) The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 69, 4390-4398CrossRefGoogle ScholarPubMed
133Ma, B.B. et al. (2003) Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma–a prospective study. Head Neck 25, 864-872Google Scholar
134Leong, J.L. et al. (2004) Epidermal growth factor receptor in undifferentiated carcinoma of the nasopharynx. Laryngoscope 114, 153-157Google Scholar
135Yazici, H. et al. (2000) c-erbB-2 gene amplification in nasopharyngeal carcinoma. Cancer Invest 18, 6-10CrossRefGoogle ScholarPubMed
136Yung, W.C. et al. (1995) Ras mutations are uncommon in nasopharyngeal carcinoma. Eur J Cancer B Oral Oncol 31B, 399-400Google Scholar
137Porter, M.J. et al. (1994) The detection of the c-myc and ras oncogenes in nasopharyngeal carcinoma by immunohistochemistry. Acta Otolaryngol 114, 105-109CrossRefGoogle ScholarPubMed
138Cheung, H.W. et al. (2004) Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis 25, 881-887Google Scholar
139Fan, C.S. et al. (2000) Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma. Hum Pathol 31, 169-178CrossRefGoogle ScholarPubMed
140Wu, H.C. et al. (2004) MDM2 expression in EBV-infected nasopharyngeal carcinoma cells. Lab Invest 84, 1547-1556CrossRefGoogle ScholarPubMed
141Qian, W. et al. (1995) Infrequent MDM2 gene amplification and absence of gross WAF1 gene alterations in nasopharyngeal carcinoma. Eur J Cancer B Oral Oncol 31B, 328-332CrossRefGoogle ScholarPubMed
142Qian, C.N. et al. (2002) Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res 62, 589-596Google ScholarPubMed
143Horikawa, T. et al. (2001) Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma. Am J Pathol 159, 27-33Google Scholar
144Or, Y.Y. et al. (2005) Characterization of chromosome 3q and 12q amplicons in nasopharyngeal carcinoma cell lines. Int J Oncol 26, 49-56Google ScholarPubMed
145Fang, Y. et al. (2001) Analysis of genetic alterations in primary nasopharyngeal carcinoma by comparative genomic hybridization. Genes Chromosomes Cancer 30, 254-2603.0.CO;2-D>CrossRefGoogle ScholarPubMed
146Liu, X.Q. et al. (2003) Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer 106, 60-65Google Scholar
147Zhou, J. et al. (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 200, 89-98Google Scholar
148Wong, T.S. et al. (2003) Differential gene methylation in undifferentiated nasopharyngeal carcinoma. Int J Oncol 22, 869-874Google ScholarPubMed
149Wong, T.S. et al. (2004) Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res 10, 2401-2406Google Scholar
150Chang, H.W. et al. (2003) Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int J Cancer 105, 851-855CrossRefGoogle ScholarPubMed
151Tsao, S.W. et al. (2003) The association of E-cadherin expression and the methylation status of the E-cadherin gene in nasopharyngeal carcinoma cells. Eur J Cancer 39, 524-531Google Scholar
152Baba, Y. et al. (2001) Reduced expression of p16 and p27 proteins in nasopharyngeal carcinoma. Cancer Detect Prev 25, 414-419Google Scholar
153Cheung, H.W. et al. (2005) Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog 43, 237-245CrossRefGoogle ScholarPubMed
154Lo, K.W. et al. (2002) Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma. Int J Cancer 98, 651-655Google Scholar
155Ko, J.Y. et al. (2002) Definition of three minimal deleted regions by comprehensive allelotyping and mutational screening of FHIT,p16(INK4A), and p19(ARF) genes in nasopharyngeal carcinoma. Cancer 94, 1987-1996Google Scholar
156Ng, A. et al. (2003) Regulation of the H19 imprinting gene expression in human nasopharyngeal carcinoma by methylation. Int J Cancer 104, 179-187CrossRefGoogle ScholarPubMed
157Chang, H.W. et al. (2003) Detection of hypermethylated RIZ1 gene in primary tumor, mouth, and throat rinsing fluid, nasopharyngeal swab, and peripheral blood of nasopharyngeal carcinoma patient. Clin Cancer Res 9, 1033-1038Google Scholar
158Kwong, J. et al. (2005) Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int J Cancer 113, 386-392CrossRefGoogle ScholarPubMed
159Chow, L.S. et al. (2004) Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncol Rep 12, 781-787Google Scholar
160Claudio, P.P. et al. (2000) Mutations in the retinoblastoma-related gene RB2/p130 in primary nasopharyngeal carcinoma. Cancer Res 60, 8-12Google Scholar
161Wong, T.S. et al. (2003) Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma. Clin Cancer Res 9, 3042-3046Google Scholar
162Lung, H.L. et al. (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24, 6525-6532Google Scholar
163Spruck, C.H. (1992) Absence of p53 gene mutations in primary nasopharyngeal carcinomas. Cancer Res 52, 4787-4790Google ScholarPubMed
164Sun, Y. et al. (1992) An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 89, 6516-6520CrossRefGoogle ScholarPubMed
165Cai, X. et al. (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2(3), e23Google Scholar
166Pfeffer, S. (2004) Identification of virus-encoded microRNAs. Science 304, 734-736Google Scholar

Further reading, resources and contacts

The IARC Cancer Epidemiology Database provides epidemiology information of NPC worldwide:

Robertson, E.S., ed. (2005) Epstein-Barr Virus, Caister Academic Press, Norwich, UK (Publisher site: http://www.horizonpress.com/hsp/books/ebv.html)Google Scholar