Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T06:53:40.513Z Has data issue: false hasContentIssue false

The mucopolysaccharidoses: a success of molecular medicine

Published online by Cambridge University Press:  18 January 2008

Lorne A. Clarke
Affiliation:
University of British Columbia, Child and Family Research Institute, Department of Medical Genetics, 4500 Oak Street, Room C234, Vancouver, British Columbia, Canada, V6H 3N1. Tel: +1 604 875 3526; Fax: +1 604 875 2376; E-mail: [email protected]

Abstract

The mucopolysaccharidoses represent a devastating group of lysosomal storage diseases affecting approximately 1 in 25 000 individuals. Advances in biochemistry and genetics over the past 25 years have resulted in the identification of the key hydrolases underlying the mucopolysaccharidoses, with subsequent isolation and characterisation of the genes involved. Ultimately these advances have led to the recent development of specific treatment regimens for some of the mucopolysaccharidoses, in the form of direct enzyme replacement. Direct replacement of the defective gene product has been attempted for very few genetic disorders, and thus the experience gained in the lysosomal storage diseases by the development, evaluation and integration of treatment regimens into healthcare is instructive for other rare genetic disorders. This review focuses on the pathophysiology of the mucopolysaccharidoses and highlights the complex biochemical and physiological perturbations that underlie the disease phenotype.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Neufeld, E.S. and Muenzer, J. (2007) The mucopolysaccharidoses. In the Online Metabolic and Molecular Bases of Inherited Disease (Scriver, C.R. et al. eds), Chapter 136, McGraw-Hill. http://genetics.accessmedicine.com/mmbid/public/Google Scholar
2McKusick, V.A. et al. (1965) The genetic mucopolysaccharidoses. Medicine 44, 445-483CrossRefGoogle ScholarPubMed
3McKusick, V.A. (1966) Heritable Disorders of Connective Tissue, MosbyGoogle Scholar
4Roubicek, M., Gehler, J. and Spranger, J. (1985) The clinical spectrum of α-L-iduronidase deficiency. Am J Med Genet 20, 471-481CrossRefGoogle ScholarPubMed
5Young, I.D. et al. (1982) A clinical and genetic study of Hunter's syndrome. 1. Heterogeneity. J Med Genet 6, 401-407CrossRefGoogle Scholar
6Ashton, L.J. et al. (1992) Immunoquantification and enzyme kinetics of alpha-L-iduronidase in cultured fibroblasts from normal controls and mucopolysaccharidosis type I patients. Am J Hum Gene 50, 787-794Google ScholarPubMed
7Parkinson-Lawrence, E. et al. (2005) Analysis of normal and mutant iduronate-2-sulphatase conformation. Biochem J 386, 395-400CrossRefGoogle ScholarPubMed
8Fuller, M. et al. (2005) Prediction of neuropathology in mucopolysaccharidosis I patients. Mol Genet Metab 84, 18-24CrossRefGoogle ScholarPubMed
9Beesley, C.E. et al. (2001) Mutational analysis of 85 mucopolysaccharidosis type I families: frequency of known mutations, identification of 17 novel mutations and in vitro expression of missense mutations. Hum Genet 109, 503-511Google ScholarPubMed
10Bunge, S. et al. (1995) Mucopolysaccharidosis type I: indentification of 13 novel mutations of the α-L-iduronidase gene. Hum Mutat 6, 91-94CrossRefGoogle Scholar
11Terlato, N.J. and Cox, G.F. (2003) Can mucopolysaccharidosis type I disease severity be predicted based on a patient's genotype? A comprehensive review of the literature. Genet Med 5, 286-294CrossRefGoogle ScholarPubMed
12Brooks, D.A. et al. (2001) Glycosidase active site mutations in human alpha-L-iduronidase. Glycobiology 11, 741-750CrossRefGoogle ScholarPubMed
13Timms, K.M. et al. (1997) Molecular and phenotypic variation in patients with severe Hunter syndrome. Hum Mol Genet 6, 479-486CrossRefGoogle ScholarPubMed
14Vafiadaki, E. et al. (1998) Mutation analysis in 57 unrelated patients with MPS II (Hunter's disease). Arch Dis Child 79, 237-241CrossRefGoogle ScholarPubMed
15Froissart, R. et al. (2002) Mucopolysaccharidosis type II–genotype/phenotype aspects. Acta Paediatr Suppl 91, 82-87CrossRefGoogle ScholarPubMed
16Karageorgos, L. et al. (2007) Mutational analysis of 105 mucopolysaccharidosis type VI patients. Hum Mutat 28, 897-903CrossRefGoogle ScholarPubMed
17Litjens, T. et al. (1996) Identification, expression, and biochemical characterization of N-acetylgalactosamine-4-sulfatase mutations and relationship with clinical phenotype in MPS-VI patients. Am J Hum Genet 58, 1127-1134Google ScholarPubMed
18Rempel, B.P., Clarke, L.A. and Withers, S.G. (2005) A homology model for human α-L-iduronidase: insights into human disease. Hum Mol Genet 85, 28-37Google ScholarPubMed
19Treacy, E., Childs, B. and Scriver, C.R. (1995) Response to treatment in hereditary metabolic disease: 1993 survey and 10-year comparison. Am J Hum Genet 56, 359-367Google Scholar
20Walkley, S.U. and March, P.A. (1993) Biology of neuronal dysfunction in storage disorders. J Inher Metab Dis 16, 284-287CrossRefGoogle ScholarPubMed
21Walkley, S.U. (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15, 433-444CrossRefGoogle ScholarPubMed
22Walkley, S.U., Zervas, M. and Wiseman, S. (2000) Gangliosides as modulators of dendritogenesis in normal and storage disease-affected pyramidal neurons. Cereb Cortex 10, 1028-1037CrossRefGoogle ScholarPubMed
23Walkley, S.U. et al. (2005) Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. Neuropathol Appl Neurobiol 31, 536-544CrossRefGoogle ScholarPubMed
24Jolly, R.D. and Walkley, S.U. (1997) Lysosomal storage diseases of animals: an essay in comparative pathology. Vet Pathol 34, 527-548CrossRefGoogle ScholarPubMed
25Turnbull, J., Powell, A. and Guimond, S. (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11, 75-82CrossRefGoogle ScholarPubMed
26Bülow, H.E. and Hobert, O. (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22, 375-407CrossRefGoogle ScholarPubMed
27Taylor, K.R. and Gallo, R.L. (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20, 9-22CrossRefGoogle ScholarPubMed
28Jackson, R.L., Busch, S.J. and Cardin, A.D. (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71, 481-539CrossRefGoogle ScholarPubMed
29Prydz, K. and Dalen, K.T. (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113, 193-205CrossRefGoogle ScholarPubMed
30Bishop, J.R., Schuksz, M. and Esko, J.D. (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030-1037CrossRefGoogle ScholarPubMed
31Perrimon, N. and Bernfield, M. (2001) Cellular functions of proteoglycans-an overview. Semin Cell Dev Biol 12, 65-67CrossRefGoogle ScholarPubMed
32Bernfield, M. et al. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729-777CrossRefGoogle ScholarPubMed
33Yamaguchi, Y. (2001) Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Semin Cell Dev Biol 12, 99-106CrossRefGoogle ScholarPubMed
34Handel, T.M. et al. (2005) Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu Rev Biochem 74, 385-410CrossRefGoogle ScholarPubMed
35Wraith, J.E. et al. (2004) Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (Laronidase). J Pediatr 144, 581-588CrossRefGoogle ScholarPubMed
36Muenzer, J. et al. (2006) A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med 8, 465-473CrossRefGoogle ScholarPubMed
37Harmatz, P. et al. (2006) Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blinded, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or RHASB) and follow-on, open-label extension study. J Pediatr 148, 533-539CrossRefGoogle ScholarPubMed
38Sands, M.S. et al. (1994) Enzyme replacement therapy for murine mucopolysaccharidosis type VII. J Clin Invest 93, 2324-2331CrossRefGoogle ScholarPubMed
39Guffon, N. et al. (1998) Follow-up of nine patients with Hurler syndrome after bone marrow transplantation. J Pediatr 133, 119-125CrossRefGoogle ScholarPubMed
40Peters, C. et al. (1996) Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood 87, 4894-4902CrossRefGoogle ScholarPubMed
41Peters, C. et al. (1998) Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group Blood 91, 2601-2608Google ScholarPubMed
42Souillet, G. et al. (2003) Outcome of 27 patients with Hurler's syndrome transplanted from either related or unrelated haematopoietic stem cell sources. Bone Marrow Transpl 31, 1105-1117CrossRefGoogle ScholarPubMed
43Staba, S.L. et al. (2004) Cord-blood transplants from unrelated donors in patients with Hurler syndrome. N Eng J Med 350, 1960-1969CrossRefGoogle Scholar
44Vellodi, A. et al. (1997) Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child 76, 92-99CrossRefGoogle ScholarPubMed
45Whitley, C.B. et al. (1993) Long-term outcome of Hurler syndrome following bone marrow transplantation. Am J Med Genet 46, 209-218CrossRefGoogle ScholarPubMed
46Guffon, N. et al. (2001) Outcome of bone marrow transplantation in eight patients with Hunter disease. J Inherit Metab Dis 24, 172Google Scholar
47Vellodi, A. et al. (1999), Long-term follow-up following bone marrow transplantation for Hunter disease. J Inherit Metab Dis 22, 638-648CrossRefGoogle ScholarPubMed
48Sivakumur, P. and Wraith, J.E. (1999) Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis 22, 849-850CrossRefGoogle ScholarPubMed
49Grewal, S.S. et al. (2005) Safety and efficacy of enzyme replacement therapy in combination with hematopoietic stem cell transplantation in Hurler syndrome. Genet Med 7, 143-146CrossRefGoogle ScholarPubMed
50Wraith, J.E. et al. (2007) Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: results of a multinational study of recombinant human α-L-iduronidase (Laronidase). Pediatrics 120, e37-e46CrossRefGoogle ScholarPubMed
51Beck, M. (2007) New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum Genet 121, 1-22CrossRefGoogle ScholarPubMed
52Sands, M.S. and Davidson, B.L. (2006) Gene therapy for lysosomal storage diseases. Mol Ther. 13, 839-849CrossRefGoogle ScholarPubMed
53Vogler, C. et al. (2001) Murine mucopolysaccharidosis VII: impact of therapies on the phenotype, clinical course, and pathology in a model of a lysosomal storage disease. Pediatr Dev Pathol. 4, 421–33CrossRefGoogle Scholar
54Li, H.H. et al. (1999) Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding α-N-acetylglucosaminidase. Proc Natl Acad Sci U S A 96, 14505-14510CrossRefGoogle ScholarPubMed
55Vogler, C. et al. (2005) Early onset of lysosomal storage disease in murine model of mucopolysaccharidosis type VII: undegraded substrate accumulates in many tissues in the fetus and very young MPS VII mouse. Pediatr Devel Pathol 8, 453-462CrossRefGoogle ScholarPubMed
56Bhaumik, M. et al. (1999) A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology 9, 1389-1396CrossRefGoogle ScholarPubMed
57Russell, C. et al. (1998) Murine MPS I: insights into the pathogenesis of Hurler syndrome. Clin Genet 53, 349–61CrossRefGoogle ScholarPubMed
58Nuttall, J.D. et al. (1999) Histomorphometric analysis of the tibial growth plate in a feline model of mucopolysaccharidosis type VI. Calcif Tissue Int 65, 47-52CrossRefGoogle Scholar
59McGlynn, R., Dobrenis, K. and Walkley, S.U. (2004) Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 480, 415-426CrossRefGoogle ScholarPubMed
60Tomatsu, S. et al. (2005) Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J Inherit Metab Dis 28, 743-757CrossRefGoogle ScholarPubMed
61Ramsay, S.L. et al. (2004) Determination of oligosaccharides and glycolipids in amniotic fluid by electrospray ionization tandem spectrometry: in utero indicators of lysosomal storage diseases. Mol Genet Metab 83, 231-238CrossRefGoogle ScholarPubMed
62Greenwood, R.S. et al. (1978) Sanfilippo A syndrome in the fetus. Clin Genet 13, 241-250CrossRefGoogle ScholarPubMed
63Wiesmann, U.N. et al. (1980) Neonatal mucopolysaccharidosis II (Hunter): a pathogenetic study. Pediatr Res 14, 749-756CrossRefGoogle Scholar
64Casal, M.L. and Wolfe, J.H. (2000) Mucopolysaccharidosis type VII in the developing mouse fetus. Pediatr Res 47, 750-756CrossRefGoogle ScholarPubMed
65Jones, M.Z. et al. (2004) Caprine mucopolysaccharidosis IIID. J Mol Neurosci 24, 277-291CrossRefGoogle ScholarPubMed
66Clarke, L.A. et al. (1997) Murine mucopolysaccharidosis type I: targeted disruption of the murine alpha-L-iduronidase gene. Hum Mol Genet. 6, 503-511CrossRefGoogle ScholarPubMed
67Beutler, E. (2006) Lysosomal storage diseases: natural history and ethical and economic aspects. Mol Genet Metab 88 208-215CrossRefGoogle ScholarPubMed
68Van Hoof, F. and Hers, H.G. (1968) Eur J Biochem 7, 34-44CrossRefGoogle Scholar
69Sands, M.S. et al. (1994) Enzyme replacement therapy for murine mucopolysaccharidosis type VII.J. Clin. Invest. 93, 2324-2331CrossRefGoogle Scholar
70Avila, J.L. and Convit, J. (1975) Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem J 152, 57-64CrossRefGoogle ScholarPubMed
71Canstantopoulous, G. and Dekaban, A.S. (1978) Neurochemistry of the mucopolysaccharidoses: brain lipids and lysosomal enzymes in patients with four type of mucopolysaccharidosis and in normal controls. J Neurochem 30, 965-973CrossRefGoogle Scholar
72Jones, M.Z. et al. (1997) Human mucopolysaccharidosis IIID: clinical, biochemical, morphological and immunohistochemical characteristics. J Neuropathol Exp Neurol 56, 1158-1167CrossRefGoogle ScholarPubMed
73Jones, M.Z. et al. (1998) Caprine mucopolysaccharidosis-IIID: clinical, biochemical, morphological and immunohistochemical characteristics. J Neuropathol Exp Neurol 57, 148-157CrossRefGoogle ScholarPubMed
74Liour, S.S. et al. (2001) Metabolic studies of glycosphingolipid accumulation in mucopolysaccharidosis IIID. Mol Genet Metab 72, 239-247CrossRefGoogle ScholarPubMed
75Walkley, S.U. (2004) Pathologic cascades and brain dysfunction. In Lysosomal Disorders of the Brain. (Platt, F.M. and Walkley, S.U., eds), pp 290-324, OxfordCrossRefGoogle Scholar
76Walkley, S.U. and Suzuki, K. (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochem Biophys Acta 1685, 48-62Google ScholarPubMed
77Pagano, R.E. et al. (2000) Membrane traffic in sphingolipid diseases. Traffic 1, 807-815CrossRefGoogle ScholarPubMed
78Jeyakumar, M. et al. (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126, 974-987CrossRefGoogle ScholarPubMed
79Myerowitz, R. et al. (2002) Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet 11, 1343-1350CrossRefGoogle ScholarPubMed
80Langmade, S.J. et al. (2006) Pregnane X receptor (PXR) activation: A mechanism for neuroprotection in a mouse model of Niemann–Pick C disease. Proc Natl Acad Sci U S A 103, 13807-13812CrossRefGoogle Scholar
81Settembre, C. et al. (2007) Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Natl Acad Sci U S A 104, 4506-4511CrossRefGoogle Scholar
82Ohmi, K. et al. (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100, 1902-1907CrossRefGoogle ScholarPubMed
83Jeyakumar, M. et al. (2004) NSAIDs increase survival in the sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56, 642-649CrossRefGoogle ScholarPubMed
84Ko, D. et al. (2005), Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet 1, 81-95Google ScholarPubMed
85Simonaro, C.M., Haskins, M.E. and Schuchman, E.H. (2001) Articular chondrocytes from animals with a dermatan sulfate storage disease undergo a high rate of apoptosis and release nitric oxide and inflammatory cytokines: a possible mechanism underlying degenerative joint disease in the mucopolysaccharidoses. Lab Invest 81, 1319-1328CrossRefGoogle ScholarPubMed
86Simonaro, C.M. et al. (2005) Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new therapeutic targets and biomarkers using animal models. Pediatr Res 57, 701-707CrossRefGoogle ScholarPubMed
87Mulloy, B. and Rider, C.C. (2006) Cytokines and proteoglycans: an introductory overview. Biochem Soc T 34, 409-413CrossRefGoogle ScholarPubMed
88Parish, C.R. (2006) The role of heparin sulphate in inflammation. Nat Rev Immunol 6, 633-643CrossRefGoogle Scholar
89Randall, D.R. et al. (2006) Heparin cofactor II-thrombin complex in MPS I: a biomarker of MPS disease. Mol Genet Metab 88, 235-243CrossRefGoogle ScholarPubMed
90Maekawa, H., Sato, H. and Tollefsen, D.M. (2000) Thrombin inhibition by HCII in the presence of elastase-cleaved HCII and thrombin-HCII complex. Thromb Res 100, 443-451CrossRefGoogle ScholarPubMed
91Verhamme, I.M., Bock, P.E. and Jackson, C.M. (2004) The preferred pathway of glycosaminoglycan-accelerated inactivation of thrombin by heparin cofactor II. J Biol Chem 279, 9785-9795CrossRefGoogle ScholarPubMed
92Pike, R.N. et al. (2005) Control of the coagulation system by serpins getting by with a little help from glycosaminoglycans. FEBS J 272, 4842-4851CrossRefGoogle ScholarPubMed
93Meins, M. et al. (2001) Progressive neuronal and motor dysfunction in mice overexpressing the serine protease inhibitor protease nexin-1 in postmitotic neurons. J Neurosci 21, 8830-8841CrossRefGoogle ScholarPubMed
94Ginsberg, S.D. et al. (1999) Accumulation of intracellular amyloid-beta peptide (A beta 1–40) in mucopolysaccharidosis brains. J Neuropathol Exp Neurol 58, 815-824CrossRefGoogle ScholarPubMed
95Watanabe, N. et al. (2004) Glypican-1 as an Abeta binding HSPG in the human brain: its localization in DIG domains and possible roles in the pathogenesis of Alzheimer's disease. FASEB J 18, 1013-1015CrossRefGoogle ScholarPubMed
96Mayer-Sonnenfeld, T. et al. (2005) The metabolism of glycosaminoglycans is impaired in prion diseases. Neurobiol Dis 20, 738-743CrossRefGoogle Scholar
97Ryazantsev, S. et al. (2007) Lysosomal accumulation of SCMAS (subunit c of mitochondrial ATP synthase) in neurons of the mouse model of mucopolysaccharidosis III B. Mol Genet Metab 90, 393-401CrossRefGoogle ScholarPubMed
98Hinek, A. and Wilson, S.E. (2000) Impaired elastogenesis in Hurler disease: dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am J Path 156, 925-938CrossRefGoogle ScholarPubMed
99Kozel, B.A., Ciliberto, C.H. and Mecham, R.P. (2004) Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells. Matrix Biol 23, 23-34CrossRefGoogle Scholar
100Hinek, A. et al. (2004) Retrovirally mediated overexpression of versican v3 reverses impaired elastogenesis and heightened proliferation exhibited by fibroblasts from Costello syndrome and Hurler disease patients. Am J Pathol 164, 119-131CrossRefGoogle ScholarPubMed
101Li, Z. et al. (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279, 5470-5479CrossRefGoogle ScholarPubMed
102Selent, J. et al. (2007) Selective inhibition of the collagenase activity of cathepsin K. J Biol Chem 282, 16492-16501CrossRefGoogle ScholarPubMed
103Jackson, R.A., Nurcombe, V. and Cool, S.M. (2006) Coordinated fibroblast growth factor and heparin sulfate regulation of osteogenesis. Gene 379, 79-91CrossRefGoogle ScholarPubMed
104Shinmyouzu, K. et al. (2007) Dermatan sulfate inhibits osteoclast formation by binding to receptor activator of NF-κB ligand. Biochem Biophys Res Commun 354, 447-452CrossRefGoogle Scholar
105Rauch, U. and Kappler, J. (2006) Chondroitin/Dermatan sulfates in the central nervous system: their structures and functions in health and disease. Adv Pharmacol. 53, 337-356CrossRefGoogle ScholarPubMed
106Huntington, J.A. (2003) Mechanisms of glycosaminoglycan activation of the serpins inhemostasis. J Thromb Haemost 1, 1535-1549CrossRefGoogle Scholar
107Roughley, P.J. (2006) The structure and function of cartilage proteoglycans. Eur Cell Mater 12, 92-101CrossRefGoogle ScholarPubMed
108Chang, X., Yamada, R. and Yamamoto, K. (2005) Inhibition of antithrombin by hyaluronic acid may be involved in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 7, R268-R273CrossRefGoogle ScholarPubMed
109Knox, S.M. and Whitelock, J.M. (2006) Perlecan: how does one molecule do so many things? Cell Mol Life Sci 63, 2435-2445CrossRefGoogle ScholarPubMed
110Gomes, R.R. Jr, Farach-Carson, M.C. and Carson, D.D. (2004) Perlecan functions in chondrogenesis: insights from in vitro and in vivo models. Cells Tissues Organs 176, 79-86CrossRefGoogle ScholarPubMed
111Gautam, M. et al. (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–35CrossRefGoogle ScholarPubMed
112Marneros, A.G. and Olsen, B.R. (2005) Physiological role of collagen XVIII and endostatin. FASEB J 19, 716-728CrossRefGoogle ScholarPubMed
113Watanabe, H., Yamada, Y. and Kimata, K. (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem 124, 687-693CrossRefGoogle ScholarPubMed
114Yoon, J.H. and Halper, J. (2004) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5, 22-34Google Scholar
115Yamaguchi, Y. (2001) Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis. Semin Cell Dev Biol 12, 99-106CrossRefGoogle ScholarPubMed
116Bovolenta, P. and Fernaud-Espinosab, I. (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61, 113-132CrossRefGoogle ScholarPubMed
117Knudson, C.B. and Knudson, W. (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12, 69-78CrossRefGoogle ScholarPubMed
118Chakravarti, S. (2006) Focus on molecules: keratocan (KERA). Exp Eye Res 82, 183-184CrossRefGoogle ScholarPubMed
119Kakkis, E.D. et al. (2001) Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 344, 182-188CrossRefGoogle ScholarPubMed
120Sifuentes, M. et al. (2007) A follow-up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Mol Genet Metab 90, 171-180CrossRefGoogle Scholar
121Muenzer, J. et al. (2007) A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab 90, 329-337CrossRefGoogle ScholarPubMed
122Harmatz, P. (2004) Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr 144, 574-580CrossRefGoogle ScholarPubMed
123Harmatz, P. (2005) Direct comparison of measures of endurance, mobility, and joint function during enzyme-replacement therapy of mucopolysaccharidosis VI (Maroteaux-Lamy Syndrome): results after 48 weeks in a phase 2 open-label clinical study of recombinant human N-acetylgalactosamine 4-sulfatase. Pediatrics 115, e681-e689CrossRefGoogle Scholar

Further reading, resources and contacts

Key patient support group websites:

Walkley, S.U. (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 96, 26-32CrossRefGoogle ScholarPubMed
Ponder, K.P. and Haskins, M.E. (2007) Gene therapy for mucopolysaccharidosis. Expert Opin Biol Ther 7, 1333-1345CrossRefGoogle ScholarPubMed
Sillence, D.J. (2007) New insights into glycosphingolipid functions—storage, lipid rafts, and translocators. Int Rev Cytol 262, 151-189CrossRefGoogle ScholarPubMed
Simons, K. and Gruenberg, J. (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10, 459-462CrossRefGoogle ScholarPubMed
http://www.goldinfo.org: (Global Organisation for Lysosomal Diseases)Google Scholar
http://www.rarediseases.org (National Organization for Rare Diseases)Google Scholar
Walkley, S.U. (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 96, 26-32CrossRefGoogle ScholarPubMed
Ponder, K.P. and Haskins, M.E. (2007) Gene therapy for mucopolysaccharidosis. Expert Opin Biol Ther 7, 1333-1345CrossRefGoogle ScholarPubMed
Sillence, D.J. (2007) New insights into glycosphingolipid functions—storage, lipid rafts, and translocators. Int Rev Cytol 262, 151-189CrossRefGoogle ScholarPubMed
Simons, K. and Gruenberg, J. (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10, 459-462CrossRefGoogle ScholarPubMed
http://www.goldinfo.org: (Global Organisation for Lysosomal Diseases)Google Scholar
http://www.rarediseases.org (National Organization for Rare Diseases)Google Scholar