Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-19T00:50:54.443Z Has data issue: false hasContentIssue false

The molecular basis of frontotemporal dementia

Published online by Cambridge University Press:  29 July 2009

Manuela Neumann
Affiliation:
Institute of Neuropathology, University Hospital of Zürich, Switzerland.
Markus Tolnay
Affiliation:
Institute of Pathology, Department of Neuropathology, University of Basel, Switzerland.
Ian R.A. Mackenzie*
Affiliation:
Department of Pathology, University of British Columbia, Vancouver, Canada.
*
*Corresponding author: Ian R.A. Mackenzie, Department of Pathology, Vancouver General Hospital, 855 West 12th Avenue, Vancouver, British Columbia, V5Z 1M9, Canada. Tel: +1 604 875 4480; Fax: +1 604 875 5707; E-mail: [email protected]

Abstract

Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Familial FTD has been linked to mutations in several genes, including those encoding the microtubule-associated protein tau (MAPT), progranulin (GRN), valosin-containing protein (VCP) and charged multivescicular body protein 2B (CHMP2B). The associated neuropathology is characterised by selective degeneration of the frontal and temporal lobes (frontotemporal lobar degeneration, FTLD), usually with the presence of abnormal intracellular protein accumulations. The current classification of FTLD neuropathology is based on the identity of the predominant protein abnormality, in the belief that this most closely reflects the underlying pathogenic process. Major subgroups include those characterised by the pathological tau, TDP-43, intermediate filaments and a group with cellular inclusions composed of an unidentified ubiquitinated protein. This review will focus on the current understanding of the molecular basis of each of the major FTLD subtypes. It is anticipated that this knowledge will provide the basis of future advances in the diagnosis and treatment of FTD.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1McKhann, G.M. et al. (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Archives of Neurology 58, 1803-1809CrossRefGoogle Scholar
2Neary, D. et al. (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546-1554CrossRefGoogle ScholarPubMed
3The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. Journal of Neurology Neurosurgery and Psychiatry 57, 416-418Google Scholar
4Padovani, A. et al. (2007) Extrapyramidal symptoms in Frontotemporal Dementia: prevalence and clinical correlations. Neuroscience Letters 422, 39-42CrossRefGoogle ScholarPubMed
5Lomen-Hoerth, C., Anderson, T. and Miller, B. (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59, 1077-1079CrossRefGoogle ScholarPubMed
6Feldman, H. et al. (2003) A Canadian cohort study of cognitive impairment and related dementias (ACCORD): study methods and baseline results. Neuroepidemiology 22, 265-274CrossRefGoogle ScholarPubMed
7Bird, T. et al. (2003) Epidemiology and genetics of frontotemporal dementia/Pick's disease. Annals of Neurology 54 Suppl. 5, S29-31CrossRefGoogle ScholarPubMed
8Stevens, M. et al. (1998) Familial aggregation in frontotemporal dementia. Neurology 50, 1541-1545Google Scholar
9Rosso, S.M. et al. (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126, 2016-2022CrossRefGoogle ScholarPubMed
10Chow, T.W. et al. (1999) Inheritance of frontotemporal dementia. Archives of Neurology 56, 817-822CrossRefGoogle ScholarPubMed
11Hutton, M. et al. (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702-705CrossRefGoogle ScholarPubMed
12Poorkaj, P. et al. (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology 43, 815-825CrossRefGoogle ScholarPubMed
13Spillantini, M.G. et al. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences of the United States of America 95, 7737-7741CrossRefGoogle ScholarPubMed
14Cruts, M. et al. (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920-924CrossRefGoogle ScholarPubMed
15Baker, M. et al. (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916-919CrossRefGoogle ScholarPubMed
16Watts, G.D. et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genetics 36, 377-381CrossRefGoogle ScholarPubMed
17Skibinski, G. et al. (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics 37, 806-808CrossRefGoogle ScholarPubMed
18Valdmanis, P.N. et al. (2007) Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Archives of Neurology 64, 240-245CrossRefGoogle ScholarPubMed
19Morita, M. et al. (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66, 839-844CrossRefGoogle ScholarPubMed
20Vance, C. et al. (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129, 868-876CrossRefGoogle Scholar
21Cairns, N.J. et al. (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica 114, 5-22Google Scholar
22Mackenzie, I.R. et al. (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica 117, 15-18Google Scholar
23Cleveland, D.W., Hwo, S.Y. and Kirschner, M.W. (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of Molecular Biology 116, 207-225Google Scholar
24Weingarten, M.D. et al. (1975) A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America 72, 1858-1862CrossRefGoogle ScholarPubMed
25Baker, M. et al. (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Human Molecular Genetics 8, 711-715CrossRefGoogle ScholarPubMed
26Stefansson, H. et al. (2005) A common inversion under selection in Europeans. Nature Genetics 37, 129-137CrossRefGoogle ScholarPubMed
27Andreadis, A., Brown, W.M. and Kosik, K.S. (1992) Structure and novel exons of the human tau gene. Biochemistry 31, 10626-10633CrossRefGoogle ScholarPubMed
28Goedert, M. and Spillantini, M.G. (2006) A century of Alzheimer's disease. Science 314, 777-781CrossRefGoogle ScholarPubMed
29Goedert, M. et al. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519-526Google Scholar
30Tolnay, M. and Probst, A. (2003) The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life 55, 299-305Google Scholar
31Lee, V.M., Goedert, M. and Trojanowski, J.Q. (2001) Neurodegenerative tauopathies. Annual Review of Neuroscience 24, 1121-1159CrossRefGoogle ScholarPubMed
32Delacourte, A. (2008) Tau, a biological marker of neurodegenerative diseases. Handbook of Clinical Neurology 89, 161-172Google Scholar
33Onari, K. and Spatz, H. (1926) Anatomische Beiträge zur Lehre von der Pickschen umschriebenen Großhirnrinden-Atrophie (“Picksche Krankheit”). Zeitschrift für die gesamte Neurologie und Psychiatrie 101, 470-511CrossRefGoogle Scholar
34Alzheimer, A. (1911) Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die gesamte Neurologie und Psychiatrie 4, 356-385CrossRefGoogle Scholar
35Pick, A. (1892) Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager medizinische Wochenschrift 17, 165-167Google Scholar
36Zhukareva, V. et al. (2002) Sporadic Pick's disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Annals of Neurology 51, 730-739CrossRefGoogle ScholarPubMed
37Mott, R.T. et al. (2005) Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. Journal of Neuropathology and Experimental Neurology 64, 420-428CrossRefGoogle ScholarPubMed
38Steele, J., Richardson, J. and Olszewski, J. (1964) Progressive supranuclear palsy; a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuclear dystonia and dementia. Archives of Neurology 10, 333-359CrossRefGoogle Scholar
39Sha, S. et al. (2006) Are frontotemporal lobar degeneration, progressive supranuclear palsy and corticobasal degeneration distinct diseases? Nature Clinical Practice. Neurology 2, 658-665Google Scholar
40Bigio, E.H., Brown, D.F. and White, C.L. 3rd (1999) Progressive supranuclear palsy with dementia: cortical pathology. Journal of Neuropathology and Experimental Neurology 58, 359-364CrossRefGoogle ScholarPubMed
41Dickson, D.W., Rademakers, R. and Hutton, M.L. (2007) Progressive supranuclear palsy: pathology and genetics. Brain Pathology 17, 74-82CrossRefGoogle ScholarPubMed
42Pittman, A.M. et al. (2005) Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. Journal of Medical Genetics 42, 837-846CrossRefGoogle ScholarPubMed
43Di Maria, E. et al. (2000) Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Annals of Neurology 47, 374-377Google Scholar
44Rebeiz, J.J., Kolodny, E.H. and Richardson, E.P. Jr. (1968) Corticodentatonigral degeneration with neuronal achromasia. Archives of Neurology 18, 20-33CrossRefGoogle ScholarPubMed
45Grimes, D.A., Lang, A.E. and Bergeron, C.B. (1999) Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 53, 1969-1974CrossRefGoogle ScholarPubMed
46Feany, M.B. and Dickson, D.W. (1995) Widespread cytoskeletal pathology characterizes corticobasal degeneration. American Journal of Pathology 146, 1388-1396Google ScholarPubMed
47Tolnay, M. and Probst, A. (2008) Argyrophilic grain disease. Handbook of Clinical Neurology 89, 553-563CrossRefGoogle ScholarPubMed
48Braak, H. and Braak, E. (1989) Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropathology and Applied Neurobiology 15, 13-26CrossRefGoogle ScholarPubMed
49Steuerwald, G.M. et al. (2007) Clinical characteristics of dementia associated with argyrophilic grain disease. Dementia and Geriatric Cognitive Disorders 24, 229-234Google Scholar
50Togo, T. et al. (2005) Clinical features of argyrophilic grain disease: a retrospective survey of cases with neuropsychiatric symptoms. American Journal of Geriatric Psychiatry 13, 1083-1091CrossRefGoogle ScholarPubMed
51Ishihara, K. et al. (2005) Argyrophilic grain disease presenting with frontotemporal dementia: a neuropsychological and pathological study of an autopsied case with presenile onset. Neuropathology 25, 165-170CrossRefGoogle ScholarPubMed
52Tsuchiya, K. et al. (2001) Argyrophilic grain disease mimicking temporal Pick's disease: a clinical, radiological, and pathological study of an autopsy case with a clinical course of 15 years. Acta Neuropathologica 102, 195-199CrossRefGoogle ScholarPubMed
53Zhukareva, V. et al. (2002) Biochemical analysis of tau proteins in argyrophilic grain disease, Alzheimer's disease, and Pick's disease: a comparative study. American Journal of Pathology 161, 1135-1141CrossRefGoogle ScholarPubMed
54Togo, T. et al. (2002) Argyrophilic grain disease is a sporadic 4-repeat tauopathy. Journal of Neuropathology and Experimental Neurology 61, 547-556CrossRefGoogle ScholarPubMed
55Tolnay, M. et al. (2002) Argyrophilic grain disease and Alzheimer's disease are distinguished by their different distribution of tau protein isoforms. Acta Neuropathologica 104, 425-434Google Scholar
56Johnson, J.K. et al. (1999) Clinical and pathological evidence for a frontal variant of Alzheimer disease. Archives of Neurology 56, 1233-1239CrossRefGoogle ScholarPubMed
57Taylor, K.I. et al. (2008) Clinical course of neuropathologically confirmed frontal-variant Alzheimer's disease. Nature Clinical Practice. Neurology 4, 226-232Google Scholar
58Jellinger, K.A. and Attems, J. (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathologica 113, 107-117CrossRefGoogle ScholarPubMed
59Bigio, E.H. et al. (2001) Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. Journal of Neuropathology and Experimental Neurology 60, 328-341CrossRefGoogle ScholarPubMed
60Kovacs, G.G. et al. (2008) White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration. Journal of Neuropathology and Experimental Neurology 67, 963-975CrossRefGoogle ScholarPubMed
61Dickson, D.W. et al. (1994) Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans. Acta Neuropathologica 88, 212-221Google Scholar
62Beach, T.G. et al. (2003) Hippocampal sclerosis dementia with tauopathy. Brain Pathology 13, 263-278CrossRefGoogle ScholarPubMed
63Probst, A., Taylor, K.I. and Tolnay, M. (2007) Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathologica 114, 335-345CrossRefGoogle ScholarPubMed
64Wilhelmsen, K.C. et al. (1994) Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. American Journal of Human Genetics 55, 1159-1165Google ScholarPubMed
65Foster, N.L. et al. (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Annals of Neurology 41, 706-715CrossRefGoogle ScholarPubMed
66van Swieten, J. and Spillantini, M.G. (2007) Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathology 17, 63-73Google Scholar
67Goedert, M. (2005) Tau gene mutations and their effects. Movement Disorders 20 Suppl 12, S45-52CrossRefGoogle ScholarPubMed
68Roberson, E.D. and Mucke, L. (2006) 100 years and counting: prospects for defeating Alzheimer's disease. Science 314, 781-784CrossRefGoogle ScholarPubMed
69van der Zee, J., Sleegers, K. and Van Broeckhoven, C. (2008) Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology 71, 1191-1197Google Scholar
70Dermaut, B. et al. (2004) A novel presenilin 1 mutation associated with Pick's disease but not beta-amyloid plaques. Annals of Neurology 55, 617-626Google Scholar
71Halliday, G.M. et al. (2005) Pick bodies in a family with presenilin-1 Alzheimer's disease. Annals of Neurology 57, 139-143CrossRefGoogle Scholar
72Zekanowski, C. et al. (2006) Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: genetic and bioinformatic assessment. Experimental Neurology 200, 82-88CrossRefGoogle ScholarPubMed
73Rippon, G.A. et al. (2003) Presenilin 1 mutation in an african american family presenting with atypical Alzheimer dementia. Archives of Neurology 60, 884-888CrossRefGoogle Scholar
74Boeve, B.F. et al. (2006) Frontotemporal dementia and parkinsonism associated with the IVS1 + 1G- > A mutation in progranulin: a clinicopathologic study. Brain 129, 3103-3114CrossRefGoogle ScholarPubMed
75Pickering-Brown, S.M. et al. (2006) Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain 129, 3124-3126Google Scholar
76Kumar-Singh, S. and Van Broeckhoven, C. (2007) Frontotemporal lobar degeneration: current concepts in the light of recent advances. Brain Pathology 17, 104-114CrossRefGoogle ScholarPubMed
77Hutton, M. (2004) Presenilin mutations associated with fronto-temporal dementia. Annals of Neurology 55, 604-606Google Scholar
78Knopman, D.S. et al. (1990) Dementia lacking distinctive histologic features: a common non- Alzheimer degenerative dementia. Neurology 40, 251-256CrossRefGoogle ScholarPubMed
79Wightman, G. et al. (1992) Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neuroscience Letters 139, 269-274CrossRefGoogle ScholarPubMed
80Okamoto, K. et al. (1992) Ubiquitin-positive intraneuronal inclusions in the extramotor cortices of presenile dementia patients with motor neuron disease. Journal of Neurology 239, 426-430Google Scholar
81Jackson, M., Lennox, G. and Lowe, J. (1996) Motor neurone disease-inclusion dementia. Neurodegeneration 5, 339-350CrossRefGoogle ScholarPubMed
82Mackenzie, I.R. and Feldman, H.H. (2005) Ubiquitin immunohistochemistry suggests classic motor neuron disease, motor neuron disease with dementia, and frontotemporal dementia of the motor neuron disease type represent a clinicopathologic spectrum. Journal of Neuropathology and Experimental Neurology 64, 730-739Google Scholar
83Lowe, J. and Rossor, M.N. (2003) Frontotemporal lobar degeneration. In Neurodegeneration: the molecular pathology of dementia and movement disorders (Dickson, D.W., eds), pp. 342-348, ISN Neuropath Press, BaselGoogle Scholar
84Lipton, A.M., White, C.L. 3rd and Bigio, E.H. (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathologica 108, 379-385Google Scholar
85Mackenzie, I.R. et al. (2006) Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathologica 112, 551-559CrossRefGoogle ScholarPubMed
86Mackenzie, I.R. et al. (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathologica 112, 539-549CrossRefGoogle ScholarPubMed
87Sampathu, D.M. et al. (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. American Journal of Pathology 169, 1343-1352Google Scholar
88Neumann, M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133Google Scholar
89Arai, T. et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications 351, 602-611CrossRefGoogle ScholarPubMed
90Ou, S.H. et al. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. Journal of Virology 69, 3584-3596CrossRefGoogle ScholarPubMed
91Buratti, E. et al. (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO Journal 20, 1774-1784CrossRefGoogle ScholarPubMed
92Mercado, P.A. et al. (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Research 33, 6000-6010CrossRefGoogle ScholarPubMed
93Winton, M.J. et al. (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. Journal of Biological Chemistry 283, 13302-13309CrossRefGoogle ScholarPubMed
94Ayala, Y.M. et al. (2008) Structural determinants of the cellular localization and shuttling of TDP-43. Journal of Cell Science 121, 3778-3785Google Scholar
95Strong, M.J. et al. (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Molecular and Cellular Neurosciences 35, 320-327Google Scholar
96Wang, I.F. et al. (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. Journal of Neurochemistry 105, 797-806Google Scholar
97Buratti, E. et al. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. Journal of Biological Chemistry 280, 37572-37584Google Scholar
98Wang, I.F., Reddy, N.M. and Shen, C.K. (2002) Higher order arrangement of the eukaryotic nuclear bodies. Proceedings of the National Academy of Sciences of the United States of America 99, 13583-13588CrossRefGoogle ScholarPubMed
99Davidson, Y. et al. (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathologica 113, 521-533Google Scholar
100Cairns, N.J. et al. (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. American Journal of Pathology 171, 227-240Google Scholar
101Neumann, M. et al. (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. Journal of Neuropathology and Experimental Neurology 66, 177-183Google Scholar
102Brandmeir, N.J. et al. (2008) Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathologica 115, 123-131Google Scholar
103Geser, F. et al. (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Archives of Neurology 66, 180-189Google Scholar
104Hatanpaa, K.J. et al. (2008) TAR DNA-Binding Protein 43 Immunohistochemistry Reveals Extensive Neuritic Pathology in FTLD-U: A Midwest-Southwest Consortium for FTLD Study. Journal of Neuropathology and Experimental Neurology 67, 271-279Google Scholar
105Hasegawa, M. et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology 64, 60-70Google Scholar
106Inukai, Y. et al. (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Letters 582, 2899-2904Google Scholar
107Neumann, M. et al. (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathologica 117, 137-149CrossRefGoogle ScholarPubMed
108Neumann, M. et al. (2007) TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. Journal of Neuropathology and Experimental Neurology 66, 152-157Google Scholar
109Forman, M.S. et al. (2006) Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. Journal of Neuropathology and Experimental Neurology 65, 571-581CrossRefGoogle ScholarPubMed
110He, Z. and Bateman, A. (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. Journal of Molecular Medicine 1, 600-612Google Scholar
111Van Damme, P. et al. (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. Journal of Cell Biology 181, 37-41Google Scholar
112He, Z. et al. (2003) Progranulin is a mediator of the wound response. Nature Medicine 9, 225-229Google Scholar
113Pickering-Brown, S.M. et al. (2008) Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain 131, 721-731Google Scholar
114Gass, J. et al. (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Human Molecular Genetics 15, 2988-3001CrossRefGoogle Scholar
115Mackenzie, I.R. (2007) The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathologica 114, 49-54Google Scholar
116Rademakers, R. et al. (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Human Molecular Genetics 17, 3631-3642CrossRefGoogle Scholar
117Momeni, P. et al. (2006) Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology 6, 44Google Scholar
118Kimonis, V.E. et al. (2008) VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochimica et Biophysica Acta 1782, 744-748Google Scholar
119Schroder, R. et al. (2005) Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Annals of Neurology 57, 457-461CrossRefGoogle ScholarPubMed
120Guinto, J.B. et al. (2007) Valosin-containing protein and the pathogenesis of frontotemporal dementia associated with inclusion body myopathy. Acta Neuropathologica 114, 55-61Google Scholar
121Ayala, Y.M., Misteli, T. and Baralle, F.E. (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proceedings of the National Academy of Sciences of the United States of America 105, 3785-3789CrossRefGoogle ScholarPubMed
122Igaz, L.M. et al. (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. American Journal of Pathology 173, 182-194CrossRefGoogle Scholar
123Igaz, L.M. et al. (2009) Expression Of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. Journal of Biological Chemistry 284, 8516-8524CrossRefGoogle ScholarPubMed
124Zhang, Y.J. et al. (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. Journal of Neuroscience 27, 10530-10534Google Scholar
125Shankaran, S.S. et al. (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. Journal of Biological Chemistry 283, 1744-1753Google Scholar
126Gijselinck, I. et al. (2009) Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiology of Aging 30, 1329-1331Google Scholar
127Schumacher, A. et al. (2009) No association of TDP-43 with sporadic frontotemporal dementia. Neurobiology of Aging 30, 157-159Google Scholar
128Rollinson, S. et al. (2007) TDP-43 gene analysis in frontotemporal lobar degeneration. Neuroscience Letters 419, 1-4Google Scholar
129Kabashi, E. et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics 40, 572-574Google Scholar
130Sreedharan, J. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672Google Scholar
131Rutherford, N.J. et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genetics 4, e1000193Google Scholar
132Gitcho, M.A. et al. (2008) TDP-43 A315T mutation in familial motor neuron disease. Annals of Neurology 63, 535-538Google Scholar
133Van Deerlin, V.M. et al. (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurology 7, 409-416Google Scholar
134Kuhnlein, P. et al. (2008) Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Archives of Neurology 65, 1185-1189Google Scholar
135Corrado, L. et al. (2009) High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Human Mutation 30, 688-394CrossRefGoogle ScholarPubMed
136Daoud, H. et al. (2009) Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics 46, 112-114CrossRefGoogle ScholarPubMed
137Yokoseki, A. et al. (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Annals of Neurology 63, 538-542CrossRefGoogle ScholarPubMed
138Pamphlett, R. et al. (2008) TDP-43 neuropathology is similar in sporadic amyotrophic lateral sclerosis with or without TDP-43 mutations. Neuropathology and Applied Neurobiology 35, 222-225Google Scholar
139Lemmens, R. et al. (2009) TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. Journal of Neurology Neurosurgery and Psychiatry 80, 354-355CrossRefGoogle ScholarPubMed
140Del Bo, R. et al. (2009) TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. European Journal of Neurology 16, 727-732CrossRefGoogle ScholarPubMed
141Benajiba, L. et al. (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Annals of Neurology 65, 470-473Google Scholar
142Pikkarainen, M., Hartikainen, P. and Alafuzoff, I. (2008) Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions Visualized With Ubiquitin-Binding Protein p62 Immunohistochemistry. Journal of Neuropathology and Experimental Neurology 67, 280-298Google Scholar
143Josephs, K.A. et al. (2008) Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathologica 116, 159-167Google Scholar
144Mackenzie, I.R. et al. (2008) Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131, 1282-1293Google Scholar
145Roeber, S. et al. (2008) TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathologica 116, 147-157CrossRefGoogle ScholarPubMed
146Holm, I.E. et al. (2007) A Reassessment of the Neuropathology of Frontotemporal Dementia Linked to Chromosome 3. Journal of Neuropathology and Experimental Neurology 66, 884-891Google Scholar
147Uchikado, H. et al. (2005) Screening for neurofilament inclusion disease using alpha-internexin immunohistochemistry. Neurology 64, 1658-1659Google Scholar
148Cairns, N.J. et al. (2004) Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63, 1376-1384CrossRefGoogle ScholarPubMed
149Cairns, N.J. et al. (2004) alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. American Journal of Pathology 164, 2153-2161CrossRefGoogle ScholarPubMed
150Yokota, O. et al. (2008) Basophilic inclusion body disease and neuronal intermediate filament inclusion disease: a comparative clinicopathological study. Acta Neuropathologica 115, 561-575Google Scholar
151Roeber, S. et al. (2006) Neurodegeneration with features of NIFID and ALS–extended clinical and neuropathological spectrum. Brain Pathology 16, 228-234Google Scholar
152Molina-Porcel, L. et al. (2008) Clinical and pathological heterogeneity of neuronal intermediate filament inclusion disease. Archives of Neurology 65, 272-275CrossRefGoogle ScholarPubMed
153Mackenzie, I.R. and Feldman, H. (2004) Neurofilament inclusion body disease with early onset frontotemporal dementia and primary lateral sclerosis. Clinical Neuropathology 23, 183-193Google ScholarPubMed
154Josephs, K.A. et al. (2003) Neurofilament inclusion body disease: a new proteinopathy? Brain 126, 2291-2303Google Scholar
155Josephs, K.A. et al. (2005) Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathologica 109, 427-432Google Scholar
156Bigio, E.H. et al. (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathology and Applied Neurobiology 29, 239-253CrossRefGoogle ScholarPubMed
157Cairns, N.J. et al. (2003) Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neuroscience Letters 341, 177-180Google Scholar
158Mosaheb, S. et al. (2005) Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease. Acta Neuropathologica 110, 360-368Google Scholar
159Uchikado, H. et al. (2006) Heterogeneous inclusions in neurofilament inclusion disease. Neuropathology 26, 417-421CrossRefGoogle ScholarPubMed
160Liu, Q. et al. (2004) Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences 61, 3057-3075Google Scholar
161Ching, G.Y. and Liem, R.K. (1991) Structure of the gene for the neuronal intermediate filament protein alpha-internexin and functional analysis of its promoter. Journal of Biological Chemistry 266, 19459-19468Google Scholar
162Fliegner, K.H. et al. (1994) Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. Journal of Comparative Neurology 342, 161-173Google Scholar
163Ching, G.Y. and Liem, R.K. (1998) Roles of head and tail domains in alpha-internexin's self-assembly and coassembly with the neurofilament triplet proteins. Journal of Cell Science 111, 321-333Google Scholar
164Lariviere, R.C. and Julien, J.P. (2004) Functions of intermediate filaments in neuronal development and disease. Journal of Neurobiology 58, 131-148Google Scholar
165Cairns, N.J. et al. (2004) alpha-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases. Acta Neuropathologica 108, 213-223Google Scholar
166Momeni, P. et al. (2006) Mutation analysis of patients with neuronal intermediate filament inclusion disease (NIFID). Neurobiology of Aging 27, 778.e1-778.e6CrossRefGoogle ScholarPubMed
167Kusaka, H., Matsumoto, S. and Imai, T. (1993) Adult-onset motor neuron disease with basophilic intraneuronal inclusion bodies. Clinical Neuropathology 12, 215-218Google Scholar
168Tsuchiya, K. et al. (2001) Familial amyotrophic lateral sclerosis with posterior column degeneration and basophilic inclusion bodies: a clinical, genetic and pathological study. Clinical Neuropathology 20, 53-59Google Scholar
169Ishihara, K. et al. (2006) An autopsy case of frontotemporal dementia with severe dysarthria and motor neuron disease showing numerous basophilic inclusions. Neuropathology 26, 447-454CrossRefGoogle ScholarPubMed
170Hamada, K. et al. (1995) Dementia with ALS features and diffuse Pick body-like inclusions (atypical Pick's disease?). Clinical Neuropathology 14, 1-6Google Scholar
171Munoz-Garcia, D. and Ludwin, S.K. (1984) Classic and generalized variants of Pick's disease: a clinicopathological, ultrastructural, and immunocytochemical comparative study. Annals of Neurology 16, 467-480Google Scholar
172Van Gerpen, J.A. et al. (2008) Insights into the dynamics of hereditary diffuse leukoencephalopathy with axonal spheroids. Neurology 71, 925-929Google Scholar
173Munoz-Garcia, D. and Ludwin, S.K. (1986) Adult-onset neuronal intranuclear hyaline inclusion disease. Neurology 36, 785-790Google Scholar
174Kertesz, A. et al. (2005) The evolution and pathology of frontotemporal dementia. Brain 128, 1996-2005CrossRefGoogle ScholarPubMed
175Forman, M.S. et al. (2006) Frontotemporal dementia: clinicopathological correlations. Annals of Neurology 59, 952-962Google Scholar
176Mesulam, M. et al. (2008) Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology 63, 709-719Google Scholar
177Munoz, D.G., Woulfe, J. and Kertesz, A. (2007) Argyrophilic thorny astrocyte clusters in association with Alzheimer's disease pathology in possible primary progressive aphasia. Acta Neuropathologica 114, 347-357CrossRefGoogle ScholarPubMed
178Uryu, K. et al. (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. Journal of Neuropathology and Experimental Neurology 67, 555-564Google Scholar
179Nakashima-Yasuda, H. et al. (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathologica 114, 221-229Google Scholar
180Higashi, S. et al. (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain Research 1184, 284-294Google Scholar
181Arai, T. et al. (2009) Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathologica 117, 125-136Google Scholar
182Amador-Ortiz, C. et al. (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Annals of Neurology 61, 435-445Google Scholar
183Ghidoni, R. et al. (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71, 1235-1239Google Scholar
184Steinacker, P. et al. (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Archives of Neurology 65, 1481-1487Google Scholar
185Foulds, P. et al. (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathologica 116, 141-146Google Scholar
186Tolnay, M. et al. (2000) A new case of frontotemporal dementia and parkinsonism resulting from an intron 10 +3-splice site mutation in the tau gene: clinical and pathological features. Neuropathology and Applied Neurobiology 26, 368-378CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

The website of the Association for Frontotemporal Dementias (AFTD), a US nationwide non-profit organisation whose mission is to promote and fund research into finding the cause and cure for FTD, provides information, education, and support to persons diagnosed with FTD and their families and caregivers; and educates physicians and allied health professionals about FTD:

Ballatore, C., Lee, V.M. and Trojanowski, J.Q. (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience 8, 663-672Google Scholar
Buratti, E. and Baralle, F.E. (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Frontiers in Bioscience 13, 867-878Google Scholar
Ahmed, Z. et al. (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation 4, 7Google Scholar
Ballatore, C., Lee, V.M. and Trojanowski, J.Q. (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience 8, 663-672Google Scholar
Buratti, E. and Baralle, F.E. (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Frontiers in Bioscience 13, 867-878Google Scholar
Ahmed, Z. et al. (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation 4, 7Google Scholar