Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T02:56:33.213Z Has data issue: false hasContentIssue false

Influenza reverse genetics: dissecting immunity and pathogenesis

Published online by Cambridge University Press:  14 February 2014

Siying Ye*
Affiliation:
School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia AAHL CSIRO Deakin Collaborative (ACDC) Biosecurity laboratory, Australian Animal Health Laboratory, CSIRO, East Geelong, VIC 3219, Australia
Justin G. Evans
Affiliation:
School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia AAHL CSIRO Deakin Collaborative (ACDC) Biosecurity laboratory, Australian Animal Health Laboratory, CSIRO, East Geelong, VIC 3219, Australia
John Stambas
Affiliation:
School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia AAHL CSIRO Deakin Collaborative (ACDC) Biosecurity laboratory, Australian Animal Health Laboratory, CSIRO, East Geelong, VIC 3219, Australia
*
*Corresponding author: Siying Ye, AAHL CSIRO Deakin Collaborative (ACDC) Biosecurity Laboratory, Australian Animal Health Laboratory (AAHL), CSIRO, 5 Portarlington Road, East Geelong, VIC 3219, Australia. E-mail: [email protected]

Abstract

Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1WHO (2009) Influenza Seasonal Fact Sheet, No. 211. WHO Media CentreGoogle Scholar
2Mao, L., Yang, Y. and Qiu, Y. (2012) Annual economic impacts of seasonal influenza on US counties: spatial heterogeneity and patterns. International Journal of Health Geographics 11, 16CrossRefGoogle ScholarPubMed
3Webster, R.G. et al. (1992) Evolution and ecology of influenza A viruses. Microbiological Review 56, 152-179CrossRefGoogle ScholarPubMed
4Jagger, B.W. et al. (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199-204CrossRefGoogle ScholarPubMed
5Bruns, K. et al. (2007) Structural characterization and oligomerization of PB1-F2, a proapoptotic influenza A virus protein. Journal of Biological Chemistry 282, 353-363CrossRefGoogle ScholarPubMed
6Portela, A. and Digard, P. (2002) The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology 83(Pt 4), 723-734CrossRefGoogle ScholarPubMed
7Martin, K. and Helenius, A. (1991) Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117-130CrossRefGoogle ScholarPubMed
8Takeda, M. et al. (2002) Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. Journal of Virology 76, 1391-1399CrossRefGoogle ScholarPubMed
9Garcia-Sastre, A. et al. (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324-330CrossRefGoogle ScholarPubMed
10Neumann, G., Whitt, M.A. and Kawaoka, Y. (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA – what have we learned? Journal of General Virology 83(Pt 11), 2635-2662CrossRefGoogle ScholarPubMed
11Webby, R.J. et al. (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363, 1099-1103CrossRefGoogle ScholarPubMed
12Li, S. et al. (1993) Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proceedings of the National Academy of Sciences USA 90, 5214-5218CrossRefGoogle ScholarPubMed
13Sexton, A. et al. (2009) Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques. Journal of Virology 83, 7619-7628CrossRefGoogle ScholarPubMed
14Taniguchi, T., Palmieri, M. and Weissmann, C. (1978) QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 274, 223-228CrossRefGoogle ScholarPubMed
15Palese, P. et al. (1996) Negative-strand RNA viruses: genetic engineering and applications. Proceedings of the National Academy of Sciences USA 93, 11354-11358CrossRefGoogle ScholarPubMed
16Parvin, J.D. et al. (1989) Promoter analysis of influenza virus RNA polymerase. Journal of Virology 63, 5142-5152CrossRefGoogle ScholarPubMed
17Luytjes, W. et al. (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107-1113CrossRefGoogle ScholarPubMed
18Schnell, M.J., Mebatsion, T. and Conzelmann, K.K. (1994) Infectious rabies viruses from cloned cDNA. EMBO Journal 13, 4195-4203CrossRefGoogle ScholarPubMed
19Bridgen, A. and Elliott, R.M. (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proceedings of the National Academy of Sciences USA 93, 15400-15404CrossRefGoogle ScholarPubMed
20Neumann, G. et al. (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proceedings of the National Academy of Sciences USA 96, 9345-9350CrossRefGoogle ScholarPubMed
21Zobel, A., Neumann, G. and Hobom, G. (1993) RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Research 21, 3607-3614CrossRefGoogle ScholarPubMed
22Hoffmann, E. et al. (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences USA 97, 6108-6113CrossRefGoogle ScholarPubMed
23Neumann, G. et al. (2005) An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proceedings of the National Academy of Sciences USA 102, 16825-16829CrossRefGoogle ScholarPubMed
24Zhang, X. et al. (2009) A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. Journal of Virology 83, 9296-9303CrossRefGoogle ScholarPubMed
25Skehel, J.J. and Wiley, D.C. (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual Review in Biochemistry 69, 531-569CrossRefGoogle ScholarPubMed
26Connor, R.J. et al. (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23CrossRefGoogle ScholarPubMed
27Glaser, L. et al. (2007) Effective replication of human influenza viruses in mice lacking a major alpha2,6 sialyltransferase. Virus Research 126, 9-18CrossRefGoogle Scholar
28Oshansky, C.M. et al. (2011) Avian influenza viruses infect primary human bronchial epithelial cells unconstrained by sialic acid alpha2,3 residues. PLoS One 6, e21183. doi:10.1371/journal.pone.0021183CrossRefGoogle ScholarPubMed
29Wilson, I.A. and Cox, N.J. (1990) Structural basis of immune recognition of influenza virus hemagglutinin. Annual Review of Immunology 8, 737-771CrossRefGoogle ScholarPubMed
30Schweiger, B., Zadow, I. and Heckler, R. (2002) Antigenic drift and variability of influenza viruses. Medical Microbiology and Immunology 191, 133-138Google ScholarPubMed
31Colman, P.M. et al. (1989) Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philosophical Transactions of the Royal Soceity of London B – Biological Sciences 323, 511-518Google ScholarPubMed
32Reid, A.H. et al. (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proceedings of the National Academy of Sciences USA 96, 1651-1656CrossRefGoogle ScholarPubMed
33Matrosovich, M. et al. (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology 74, 8502-8512CrossRefGoogle ScholarPubMed
34Korsman, K. (2006) Vaccines. Influenza Report. Flying Publisher, Paris, FranceGoogle Scholar
35Fleming, D.M. (2010) Influenza and influenza vaccines – the need for further developments. European Infectious Disease 4(Suppl. 1), 2-6Google Scholar
36Cox, R.J., Brokstad, K.A. and Ogra, P. (2004) Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scandinavian Journal of Immunology 59, 1-15CrossRefGoogle ScholarPubMed
37Govaert, T.M. et al. (1994) The efficacy of influenza vaccination in elderly individuals. A randomized double-blind placebo-controlled trial. Journal of American Medical Association 272, 1661-1665CrossRefGoogle ScholarPubMed
38Corrigan, E.M. and Clancy, R.L. (1999) Is there a role for a mucosal influenza vaccine in the elderly? Drugs Aging 15, 169-181CrossRefGoogle Scholar
39MedImmune Vaccines (2003) Influenza virus vaccine live intranasal – MedImmune vaccines: CAIV-T, influenza vaccine live intranasal. In Drugs R & D (2003/09/04 edn), pp. 312-319Google Scholar
40Fiore, A.E., Bridges, C.B. and Cox, N.J. (2009) Seasonal influenza vaccines. Current Topics in Microbiology and Immunology 333, 43-82Google ScholarPubMed
41Carter, N.J. and Curran, M.P. (2011) Live attenuated influenza vaccine (FluMist(R); Fluenz): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71, 1591-1622CrossRefGoogle Scholar
42Doherty, P.C. and Kelso, A. (2008) Toward a broadly protective influenza vaccine. Journal of Clinical Investigation 118, 3273-3275Google Scholar
43Du, L., Zhou, Y. and Jiang, S. (2010) Research and development of universal influenza vaccines. Microbes and Infection 12, 280-286CrossRefGoogle ScholarPubMed
44Lee, L.Y. et al. (2008) Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. Journal of Clinical Investigation 118, 3478-3490Google ScholarPubMed
45Thomas, P.G. et al. (2006) Cell-mediated protection in influenza infection. Emerging Infectious Diseases 12, 48-54CrossRefGoogle ScholarPubMed
46Goodman, A.G. et al. (2011) A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus. PLoS One 6, e25938. doi:10.1371/journal.pone.0025938CrossRefGoogle ScholarPubMed
47Booy, R. et al. (2006) Pandemic vaccines: promises and pitfalls. Medical Journal of Australia 185(10 Suppl), S62-S65CrossRefGoogle ScholarPubMed
48Subbarao, K. et al. (2003) Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 305, 192-200CrossRefGoogle ScholarPubMed
49Hatta, M. et al. (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840-1842CrossRefGoogle ScholarPubMed
50Watanabe, T. et al. (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proceedings of the National Academy of Sciences USA 106, 588-592CrossRefGoogle ScholarPubMed
51Taubenberger, J.K. et al. (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889-893CrossRefGoogle ScholarPubMed
52Subbarao, E.K., London, W. and Murphy, B.R. (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology 67, 1761-1764CrossRefGoogle ScholarPubMed
53Gabriel, G. et al. (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proceedings of the National Academy of Sciences USA 102, 18590-18595CrossRefGoogle ScholarPubMed
54Shinya, K. et al. (2004) Characterization of a neuraminidase-deficient influenza a virus as a potential gene delivery vector and a live vaccine. Journal of Virology 78, 3083-3088CrossRefGoogle Scholar
55Li, Z. et al. (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology 79, 12058-12064CrossRefGoogle Scholar
56de Jong, M.D. et al. (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12, 1203-1207CrossRefGoogle ScholarPubMed
57Detjen, B.M. et al. (1987) The three influenza virus polymerase (P) proteins not associated with viral nucleocapsids in the infected cell are in the form of a complex. Journal of Virology 61, 16-22CrossRefGoogle Scholar
58Pappas, C. et al. (2008) Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proceedings of the National Academy of Sciences USA 105, 3064-3069CrossRefGoogle Scholar
59Chen, W. et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 7, 1306-1312CrossRefGoogle ScholarPubMed
60Mazur, I. et al. (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cellular Microbiology 10, 1140-1152CrossRefGoogle ScholarPubMed
61McAuley, J.L. et al. (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host and Microbe 2, 240-249CrossRefGoogle ScholarPubMed
62Conenello, G.M. et al. (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathogens 3, 1414-1421CrossRefGoogle ScholarPubMed
63de la Luna, S. et al. (1995) Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. Journal of Virology 69, 2427-2433CrossRefGoogle ScholarPubMed
64Ehrhardt, C. et al. (2007) Influenza A virus NS1 protein activates the PI3 K/Akt pathway to mediate antiapoptotic signaling responses. Journal of Virology 81, 3058-3067CrossRefGoogle Scholar
65Donelan, N.R., Basler, C.F. and Garcia-Sastre, A. (2003) A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. Journal of Virology 77, 13257-13266CrossRefGoogle ScholarPubMed
66Guo, Z. et al. (2007) NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. American Journal of Respiratory Cell and Molecular Biology 36, 263-269CrossRefGoogle ScholarPubMed
67Mibayashi, M. et al. (2007) Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. Journal of Virology 81, 514-524CrossRefGoogle ScholarPubMed
68Opitz, B. et al. (2007) IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cellular Microbiology 9, 930-938CrossRefGoogle ScholarPubMed
69Taubenberger, J.K. (2005) The virulence of the 1918 pandemic influenza virus: unraveling the enigma. Archives of Virology, Supplement (19), 101-115Google ScholarPubMed
70Egorov, A. et al. (1998) Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. Journal of Virology 72, 6437-6441CrossRefGoogle ScholarPubMed
71Guan, Y. et al. (2002) Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proceedings of the National Academy of Sciences USA 99, 8950-8955CrossRefGoogle ScholarPubMed
72Seo, S.H., Hoffmann, E. and Webster, R.G. (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Medicine 8, 950-954CrossRefGoogle ScholarPubMed
73Obenauer, J.C. et al. (2006) Large-scale sequence analysis of avian influenza isolates. Science 311, 1576-1580CrossRefGoogle ScholarPubMed
74Sheng, M. and Sala, C. (2001) PDZ domains and the organization of supramolecular complexes. Annual Review in Neuroscience 24, 1-29CrossRefGoogle ScholarPubMed
75Jackson, D. et al. (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proceedings of the National Academy of Sciences USA 105, 4381-4386CrossRefGoogle ScholarPubMed
76Wang, W. et al. (1999) RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA 5, 195-205CrossRefGoogle Scholar
77Min, J.Y. et al. (2007) A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 363, 236-243CrossRefGoogle ScholarPubMed
78Hale, B.G. et al. (2008) The multifunctional NS1 protein of influenza A viruses. Journal of General Virology 89(Pt 10), 2359-2376CrossRefGoogle ScholarPubMed
79Ayllon, J. et al. (2012) Contribution of NS1 effector domain dimerization to Influenza A virus replication and virulence. Journal of Virology 86, 13095-13098CrossRefGoogle ScholarPubMed
80Bottcher, E. et al. (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. Journal of Virology 80, 9896-9898CrossRefGoogle ScholarPubMed
81Horimoto, T. and Kawaoka, Y. (1994) Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of Virology 68, 3120-3128CrossRefGoogle ScholarPubMed
82Wang, M. et al. (2012) Residue Y161 of influenza virus hemagglutinin is involved in viral recognition of sialylated complexes from different hosts. Journal of Virology 86, 4455-4462CrossRefGoogle ScholarPubMed
83Glaser, L. et al. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology 79, 11533-11536CrossRefGoogle ScholarPubMed
84van Doremalen, N. et al. (2011) A single amino acid in the HA of pH1N1 2009 influenza virus affects cell tropism in human airway epithelium, but not transmission in ferrets. PLoS One 6, e25755. doi:10.1371/journal.pone.0025755CrossRefGoogle Scholar
85de Vries, R.P. et al. (2011) Only two residues are responsible for the dramatic difference in receptor binding between swine and new pandemic H1 hemagglutinin. Journal of Biological Chemistry 286, 5868-5875CrossRefGoogle ScholarPubMed
86Schmolke, M. and Garcia-Sastre, A. (2010) Evasion of innate and adaptive immune responses by influenza A virus. Cellular Microbiology 12, 873-880CrossRefGoogle ScholarPubMed
87Takeuchi, O. and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820CrossRefGoogle ScholarPubMed
88Le Goffic, R. et al. (2007) Cutting Edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. Journal of Immunology 178, 3368-3372CrossRefGoogle ScholarPubMed
89Goodbourn, S., Didcock, L. and Randall, R.E. (2000) Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. Journal of General Virology 81(Pt 10), 2341-2364CrossRefGoogle ScholarPubMed
90Lopez, C.B. et al. (2003) Type I interferon induction pathway, but not released interferon, participates in the maturation of dendritic cells induced by negative-strand RNA viruses. Journal of Infectious Diseases 187, 1126-1136CrossRefGoogle Scholar
91Fernandez-Sesma, A. et al. (2006) Influenza virus evades innate and adaptive immunity via the NS1 protein. Journal of Virology 80, 6295-6304CrossRefGoogle ScholarPubMed
92Haye, K. et al. (2009) The NS1 protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. Journal of Virology 83, 6849-6862CrossRefGoogle ScholarPubMed
93Davis, M.M. et al. (1998) Ligand recognition by alpha beta T cell receptors. Annual Review of Immunology 16, 523-544CrossRefGoogle ScholarPubMed
94Boon, A.C. et al. (2002) Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Journal of Virology 76, 2567-2572CrossRefGoogle Scholar
95Goulder, P.J. et al. (2001) Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334-338CrossRefGoogle ScholarPubMed
96Goulder, P.J. et al. (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Medicine 3, 212-217CrossRefGoogle ScholarPubMed
97Yewdell, J.W. and Bennink, J.R. (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annual Review of Immunology 17, 51-88CrossRefGoogle ScholarPubMed
98Townsend, A.R. et al. (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959-968CrossRefGoogle ScholarPubMed
99Belz, G.T. et al. (2000) A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. Journal of Virology 74, 3486-3493CrossRefGoogle ScholarPubMed
100Sigal, L.J. and Wylie, D.E. (1996) Role of non-anchor residues of Db-restricted peptides in class I binding and TCR triggering. Molecular Immunology 33, 1323-1333CrossRefGoogle Scholar
101Price, G.E. et al. (2000) Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. Journal of Experimental Medicine 191, 1853-1867CrossRefGoogle ScholarPubMed
102Webby, R.J. et al. (2003) Protection and compensation in the influenza virus-specific CD8+ T cell response. Proceedings of the National Academy of Sciences USA 100, 7235-7240CrossRefGoogle ScholarPubMed
103Andreansky, S.S. et al. (2005) Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8 + -T-cell responses. Journal of Virology 79, 4329-4339CrossRefGoogle ScholarPubMed
104La Gruta, N.L. et al. (2006) A virus-specific CD8+ T cell immunodominance hierarchy determined by antigen dose and precursor frequencies. Proceedings of the National Academy of Sciences USA 103, 994-999CrossRefGoogle ScholarPubMed
105Jenkins, M.R. et al. (2006) Addition of a prominent epitope affects influenza A virus-specific CD8+ T cell immunodominance hierarchies when antigen is limiting. Journal of Immunology 177, 2917-2925CrossRefGoogle ScholarPubMed
106Kedzierska, K. et al. (2008) Complete modification of TCR specificity and repertoire selection does not perturb a CD8+ T cell immunodominance hierarchy. Proceedings of the National Academy of Sciences USA 105, 19408-19413CrossRefGoogle Scholar
107Florido, M. et al. (2013) Influenza A virus infection impairs mycobacteria-specific T cell responses and mycobacterial clearance in the lung during pulmonary coinfection. Journal of Immunology 191, 302-311CrossRefGoogle ScholarPubMed
108Jegaskanda, S. et al. (2012) Comparison of influenza and SIV specific CD8 T cell responses in macaques. PLoS One 7, e32431. doi:10.1371/journal.pone.0032431CrossRefGoogle ScholarPubMed
109Wojtasiak, M. et al. (2004) Persistent expression of CD94/NKG2 receptors by virus-specific CD8 T cells is initiated by TCR-mediated signals. International Immunology 16, 1333-1341CrossRefGoogle ScholarPubMed
110Reece, J.C. et al. (2010) Timing of immune escape linked to success or failure of vaccination. PLoS One 5, e12774. doi:10.1371/journal.pone.0012774CrossRefGoogle ScholarPubMed
111Gerhard, W. et al. (1997) Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunological Reviews 159, 95-103CrossRefGoogle ScholarPubMed
112Sealy, R. et al. (2003) Antibody response to influenza infection of mice: different patterns for glycoprotein and nucleocapsid antigens. Immunology 108, 431-439CrossRefGoogle ScholarPubMed
113Laursen, N.S. and Wilson, I.A. (2013) Broadly neutralizing antibodies against influenza viruses. Antiviral Res 98, 476-483CrossRefGoogle ScholarPubMed
114Kang, S.M., Song, J.M. and Compans, R.W. (2011) Novel vaccines against influenza viruses. Virus Research 162, 31-38CrossRefGoogle ScholarPubMed
115Job, E.R. et al. (2013) Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. Journal of Immunology 190, 2169-2177CrossRefGoogle ScholarPubMed
116Davtyan, H. et al. (2011) The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease. Journal of Translational Medicine 9, 127CrossRefGoogle ScholarPubMed
117Thomas, P.G. et al. (2006) An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. Proceedings of the National Academy of Sciences USA 103, 2764-2769CrossRefGoogle Scholar
118Snyder, M.H. et al. (1985) Attenuation of wild-type human influenza A virus by acquisition of the PA polymerase and matrix protein genes of influenza A/Ann Arbor/6/60 cold-adapted donor virus. Journal of Clinical Microbiology 22, 719-725CrossRefGoogle ScholarPubMed
119Maassab, H.F. and DeBorde, D.C. (1985) Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine 3, 355-369CrossRefGoogle ScholarPubMed
120Snyder, M.H. et al. (1988) Four viral genes independently contribute to attenuation of live influenza A/Ann Arbor/6/60 (H2N2) cold-adapted reassortant virus vaccines. Journal of Virology 62, 488-495CrossRefGoogle ScholarPubMed
121Donabedian, A.M. et al. (1988) A mutation in the PA protein gene of cold-adapted B/Ann Arbor/1/66 influenza virus associated with reversion of temperature sensitivity and attenuated virulence. Virology 163, 444-451CrossRefGoogle ScholarPubMed
122Restifo, N.P. et al. (1998) Transfectant influenza A viruses are effective recombinant immunogens in the treatment of experimental cancer. Virology 249, 89-97CrossRefGoogle ScholarPubMed
123Zheng, H., Palese, P. and Garcia-Sastre, A. (2000) Antitumor properties of influenza virus vectors. Cancer Research 60, 6972-6976Google ScholarPubMed
124Strobel, I. et al. (2000) Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Human Gene Therapy 11, 2207-2218CrossRefGoogle ScholarPubMed
125Li, S. et al. (1993) Chimeric influenza virus induces neutralizing antibodies and cytotoxic T cells against human immunodeficiency virus type 1. Journal of Virology 67, 6659-6666CrossRefGoogle ScholarPubMed
126Ferko, B. et al. (1998) Chimeric influenza virus replicating predominantly in the murine upper respiratory tract induces local immune responses against human immunodeficiency virus type 1 in the genital tract. Journal of Infectious Diseases 178, 1359-1368CrossRefGoogle ScholarPubMed
127Muster, T. et al. (1995) Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus. Journal of Virology 69, 6678-6686CrossRefGoogle ScholarPubMed
128Gonzalez-Aseguinolaza, G. et al. (2003) Induction of protective immunity against malaria by priming-boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8 + -T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii. Journal of Virology 77, 11859-11866CrossRefGoogle ScholarPubMed
129Gilleland, H.E. Jr. et al. (1997) Chimeric influenza viruses incorporating epitopes of outer membrane protein F as a vaccine against pulmonary infection with Pseudomonas aeruginosa. Behring Institute of Mitteilungen 98, 291-301Google Scholar
130Staczek, J. et al. (1998) A chimeric influenza virus expressing an epitope of outer membrane protein F of Pseudomonas aeruginosa affords protection against challenge with P. aeruginosa in a murine model of chronic pulmonary infection. Infection and Immunity 66, 3990-3994CrossRefGoogle Scholar
131McCutchan, F.E. et al. (2000) Diversity of envelope glycoprotein from human immunodeficiency virus type 1 of recent seroconverters in Thailand. AIDS Research and Human Retroviruses 16, 801-805CrossRefGoogle ScholarPubMed
132Korber, B. et al. (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. British Medical Bulletin 58, 19-42CrossRefGoogle ScholarPubMed
133Perrin, H. et al. (2010) New approaches to design HIV-1 T-cell vaccines. Current Opinion in HIV and AIDS 5, 368-376CrossRefGoogle ScholarPubMed
134Rerks-Ngarm, S. et al. (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. New England Journal of Medicine 361, 2209-2220CrossRefGoogle ScholarPubMed
135Tang, X. and Chen, Z. (2010) The development of an AIDS mucosal vaccine. Viruses 2, 283-297CrossRefGoogle ScholarPubMed
136Gherardi, M.M. et al. (2003) Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. Journal of Virology 77, 7048-7057CrossRefGoogle ScholarPubMed
137Nakaya, Y. et al. (2004) Induction of cellular immune responses to simian immunodeficiency virus gag by two recombinant negative-strand RNA virus vectors. Journal of Virology 78, 9366-9375CrossRefGoogle ScholarPubMed
138Goulder, P.J. and Watkins, D.I. (2004) HIV and SIV CTL escape: implications for vaccine design. Nature Reviews Immunology 4, 630-640CrossRefGoogle ScholarPubMed
139Pielak, R.M., Schnell, J.R. and Chou, J.J. (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proceedings of the National Academy of Sciences USA 106, 7379-7384CrossRefGoogle ScholarPubMed
140Itzstein, J.C.D.a.M.v. (2001) Anti-influenza virus drug design: sialidase inhibitors. Australian Journal of Chemistry 54, 663-670Google Scholar
141Hayden, F.G. and de Jong, M.D. (2011) Emerging influenza antiviral resistance threats. Journal of Infectious Diseases 203, 6-10CrossRefGoogle ScholarPubMed
142Whitley, R.J. et al. (2013) Global assessment of resistance to neuraminidase inhibitors, 2008–2011: the Influenza Resistance Information Study (IRIS). Clinical Infectious Disease 56, 1197-1205CrossRefGoogle ScholarPubMed
143Yen, H.L. et al. (2013) Resistance to neuraminidase inhibitors conferred by an R292 K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio 4, e00396-13. doi: 10.1128/mBio.00396-13CrossRefGoogle Scholar
144Abed, Y., Goyette, N. and Boivin, G. (2005) Generation and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutations. Antimicrobial Agents and Chemotherapy 49, 556-559CrossRefGoogle ScholarPubMed
145Abed, Y., Baz, M. and Boivin, G. (2006) Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antiviral Therapy 11, 971-976CrossRefGoogle ScholarPubMed
146Pizzorno, A. et al. (2011) Generation and characterization of recombinant pandemic influenza A(H1N1) viruses resistant to neuraminidase inhibitors. Journal of Infectious Diseases 203, 25-31CrossRefGoogle ScholarPubMed
147Nelson, M.I. et al. (2009) The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology 388, 270-278CrossRefGoogle ScholarPubMed
148Gubareva, L.V. et al. (2001) Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. Journal of Infectious Diseases 183, 523-531CrossRefGoogle ScholarPubMed
149Wang, M.Z., Tai, C.Y. and Mendel, D.B. (2002) Mechanism by which mutations at his274 alter sensitivity of influenza a virus n1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrobial Agents and Chemotherapy 46, 3809-3816CrossRefGoogle ScholarPubMed
150Gubareva, L.V. et al. (2010) Comprehensive assessment of 2009 pandemic influenza A (H1N1) virus drug susceptibility in vitro. Antiviral Therapy 15, 1151-1159CrossRefGoogle ScholarPubMed
151Gubareva, L.V. et al. (1996) Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. Journal of Virology 70, 1818-1827CrossRefGoogle ScholarPubMed
152Simon, P. et al. (2011) The I222 V neuraminidase mutation has a compensatory role in replication of an oseltamivir-resistant influenza virus A/H3N2 E119 V mutant. Journal of Clinical Microbiology 49, 715-717CrossRefGoogle Scholar
153Manicassamy, B. et al. (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proceedings of the National Academy of Sciences USA 107, 11531-11536CrossRefGoogle ScholarPubMed
154Kittel, C. et al. (2004) Rescue of influenza virus expressing GFP from the NS1 reading frame. Virology 324, 67-73CrossRefGoogle ScholarPubMed
155Ku, A.S. and Chan, L.T. (1999) The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye's syndrome. Journal of Paediatrics and Child Health 35, 207-209CrossRefGoogle Scholar
156Fouchier, R.A., Garcia-Sastre, A. and Kawaoka, Y. (2012) Pause on avian flu transmission studies. Nature 481, 443CrossRefGoogle ScholarPubMed
157Herfst, S. et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534-1541CrossRefGoogle ScholarPubMed
158Imai, M. et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428CrossRefGoogle ScholarPubMed
159Song, M.S. et al. (2013) Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. Journal of General Virology 94(Pt 6), 1230-1235CrossRefGoogle ScholarPubMed
160Hamamoto, I. et al. (2013) High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. PLoS One 8, e59892. doi: 10.1371/journal.pone.0059892CrossRefGoogle ScholarPubMed
161Fouchier, R.A. et al. (2012) Pause on avian flu transmission research. Science 335, 400-401CrossRefGoogle ScholarPubMed
162Fouchier, R.A. et al. (2013) Transmission studies resume for avian flu. Science 339, 520-521CrossRefGoogle ScholarPubMed
163Gao, R. et al. (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. New England Journal of Medicine 368, 1888-1897CrossRefGoogle ScholarPubMed
164Watanabe, T. et al. (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501, 551-555CrossRefGoogle ScholarPubMed
165Tong, S. et al. (2012) A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences USA 109, 4269-4274CrossRefGoogle ScholarPubMed
166Garcia-Sastre, A. (2012) The neuraminidase of bat influenza viruses is not a neuraminidase. Proceedings of the National Academy of Sciences USA 109, 18635-18636CrossRefGoogle Scholar
167Schmid, S., Zony, L.C. and Tenoever, B.R. (2013) A versatile RNA vector for delivery of coding and non-coding RNAs. Journal of Virology 88, 2333-2336CrossRefGoogle Scholar