Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T02:54:18.948Z Has data issue: false hasContentIssue false

Hypothalamic orexins/hypocretins as regulators of breathing

Published online by Cambridge University Press:  02 October 2008

Rhîannan H. Williams*
Affiliation:
Department of Pharmacology, University of Cambridge, Cambridge, UK.
Denis Burdakov
Affiliation:
Department of Pharmacology, University of Cambridge, Cambridge, UK.
*
*Corresponding author: Rhîannan Williams, University of Cambridge, Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK. Tel: +44 (0)1223 334000; Fax: +44 (0)1223 334100; E-mail: [email protected]

Abstract

It was suggested half a century ago that electrical impulses from the lateral hypothalamic area stimulate breathing. It is now emerging that these effects may be mediated, at least in part, by neurons containing orexin neuropeptides (also known as hypocretins). These cells promote wakefulness and consciousness, and their loss results in narcolepsy. Recent data also show that orexin neurons directly project to respiratory centres in the brainstem, which express orexin receptors, and where injection of orexin stimulates breathing. Because orexin neurons receive inputs that signal metabolic, sleep/wake and emotional states, it is tempting to speculate that they may regulate breathing according to these parameters. Knockout of the orexin gene in mice reduces CO2-induced increases in breathing by ∼50% and increases the frequency of spontaneous sleep apneas. The relationship between orexins and breathing may be bidirectional: the rate of breathing controls acid and CO2 levels, and these signals alter the electrical activity of orexin neurons in vitro. Overall, these findings suggest that orexins are important for the regulation of breathing and may potentially play a role in the pathophysiology and medical treatment of respiratory disorders.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Saper, C.B., Scammell, T.E. and Lu, J. (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263CrossRefGoogle Scholar
2Morton, G.J. et al. (2006) Central nervous system control of food intake and body weight. Nature 443, 289-295CrossRefGoogle ScholarPubMed
3de Lecea, L. et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95, 322-327CrossRefGoogle ScholarPubMed
4Sakurai, T. et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573-585CrossRefGoogle Scholar
5Peyron, C. et al. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18, 9996-10015CrossRefGoogle ScholarPubMed
6Sakurai, T. (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8, 171-181CrossRefGoogle ScholarPubMed
7Burdakov, D. (2004) Electrical signaling in central orexin/hypocretin circuits: tuning arousal and appetite to fit the environment. Neuroscientist 10, 286-291CrossRefGoogle ScholarPubMed
8Mignot, E., Taheri, S. and Nishino, S. (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 5 Suppl, 1071-1075CrossRefGoogle ScholarPubMed
9Willie, J.T. et al. (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24, 429-458CrossRefGoogle ScholarPubMed
10Harris, G. C. and Aston-Jones, G. (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29, 571-577CrossRefGoogle ScholarPubMed
11de Lecea, L. et al. (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26, 10372-10375CrossRefGoogle ScholarPubMed
12Lin, L. et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365-376CrossRefGoogle ScholarPubMed
13Chemelli, R.M. et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437-451CrossRefGoogle ScholarPubMed
14Thannickal, T.C. et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469-474CrossRefGoogle ScholarPubMed
15Peyron, C. et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6, 991-997CrossRefGoogle Scholar
16Nishino, S. et al. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39-40CrossRefGoogle ScholarPubMed
17Hara, J. et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345-354CrossRefGoogle ScholarPubMed
18Yamanaka, A. et al. (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701-713CrossRefGoogle ScholarPubMed
19Estabrooke, I.V. et al. (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21, 1656-1662CrossRefGoogle ScholarPubMed
20Kiyashchenko, L.I. et al. (2002) Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22, 5282-5286CrossRefGoogle ScholarPubMed
21Lee, M.G., Hassani, O.K. and Jones, B.E. (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25, 6716-6720CrossRefGoogle ScholarPubMed
22Mileykovskiy, B.Y., Kiyashchenko, L.I. and Siegel, J.M. (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787-798CrossRefGoogle ScholarPubMed
23Saper, C.B., Chou, T.C. and Scammell, T.E. (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24, 726-731CrossRefGoogle ScholarPubMed
24Li, Y. et al. (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169-1181CrossRefGoogle Scholar
25Yamanaka, A. et al. (2003b) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303, 120-129CrossRefGoogle ScholarPubMed
26Zeitzer, J.M. et al. (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23, 3555-3560CrossRefGoogle Scholar
27Redgate, E.S. and Gellhorn, E. (1958) Respiratory activity and the hypothalamus. Am J Physiol 193, 189-194CrossRefGoogle ScholarPubMed
28Tanaka, M. and McAllen, R.M. (2008) Functional topography of the dorsomedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 294, R477-486CrossRefGoogle ScholarPubMed
29Zhang, W. et al. (2006) Multiple components of the defense response depend on orexin: evidence from orexin knockout mice and orexin neuron-ablated mice. Auton Neurosci 126–127, 139-145CrossRefGoogle ScholarPubMed
30Samson, W.K. et al. (1999) Cardiovascular regulatory actions of the hypocretins in brain. Brain Res 831, 248-253CrossRefGoogle ScholarPubMed
31Shirasaka, T. et al. (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277, R1780-1785Google ScholarPubMed
32Machado, B.H. et al. (2002) Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Pept 104, 75-81CrossRefGoogle ScholarPubMed
33Chen, C.T. et al. (2000) Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 278, R692-697CrossRefGoogle ScholarPubMed
34Feldman, J.L. et al. (1990) Neurogenesis of respiratory rhythm and pattern: emerging concepts. Am J Physiol 259, R879-886Google ScholarPubMed
35Hilaire, G., Bou, C. and Monteau, R. (1997) Rostral ventrolateral medulla and respiratory rhythmogenesis in mice. Neurosci Lett 224, 13-16CrossRefGoogle ScholarPubMed
36Volgin, D.V., Saghir, M. and Kubin, L. (2002) Developmental changes in the orexin 2 receptor mRNA in hypoglossal motoneurons. Neuroreport 13, 433-436CrossRefGoogle ScholarPubMed
37Fung, S.J. et al. (2001) Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat: a double-labeling immunohistochemical study. Brain Res 903, 257-262CrossRefGoogle Scholar
38Krout, K.E., Mettenleiter, T.C. and Loewy, A.D. (2003) Single CNS neurons link both central motor and cardiosympathetic systems: a double-virus tracing study. Neuroscience 118, 853-866CrossRefGoogle ScholarPubMed
39Young, J.K. et al. (2005) Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol 98, 1387-1395CrossRefGoogle ScholarPubMed
40Terada, J. et al. (2008) Ventilatory long-term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol 104, 499-507CrossRefGoogle ScholarPubMed
41Zhang, W., Fukuda, Y. and Kuwaki, T. (2005) Respiratory and cardiovascular actions of orexin-A in mice. Neurosci Lett 385, 131-136CrossRefGoogle ScholarPubMed
42Deng, B.S. et al. (2007) Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol 103, 1772-1779CrossRefGoogle ScholarPubMed
43Nakamura, A. et al. (2007) Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol 102, 241-248CrossRefGoogle ScholarPubMed
44Kayaba, Y. et al. (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285, R581-593CrossRefGoogle ScholarPubMed
45Kuwaki, T. (2008) Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol, Mar 30 [Epub ahead of print]CrossRefGoogle ScholarPubMed
46Chesler, M. (2003) Regulation and modulation of pH in the brain. Physiol Rev 83, 1183-1221CrossRefGoogle ScholarPubMed
47Nattie, E.E. (2001) Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129, 257-268CrossRefGoogle ScholarPubMed
48Putnam, R.W., Filosa, J.A. and Ritucci, N.A. (2004) Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287, C1493–526CrossRefGoogle ScholarPubMed
49Richerson, G.B. (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5, 449-461CrossRefGoogle ScholarPubMed
50Williams, R.H. et al. (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A 104, 10685-10690CrossRefGoogle ScholarPubMed
51Adamantidis, A.R. et al. (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420-424CrossRefGoogle ScholarPubMed
52Sakurai, T. et al. (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297-308CrossRefGoogle ScholarPubMed
53Yoshida, K. et al. (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494, 845-861CrossRefGoogle Scholar
54Igarashi, N. et al. (2003) Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest 124, 1381-1385CrossRefGoogle ScholarPubMed
55Busquets, X. et al. (2004) Decreased plasma levels of orexin-A in sleep apnea. Respiration 71, 575-579CrossRefGoogle ScholarPubMed
56Kanbayashi, T. et al. (2003) CSF hypocretin measures in patients with obstructive sleep apnea. J Sleep Res 12, 339-341CrossRefGoogle ScholarPubMed
57Nishijima, T. et al. (2003) Plasma orexin-A-like immunoreactivity in patients with sleep apnea hypopnea syndrome. Peptides 24, 407-411CrossRefGoogle ScholarPubMed
58Sakurai, S. et al. (2004) Clinical significance of daytime plasma orexin-A-like immunoreactivity concentrations in patients with obstructive sleep apnea hypopnea syndrome. Respiration 71, 380-384CrossRefGoogle ScholarPubMed
59Sakurai, S. et al. (2004) Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest 125, 1963; author reply 1963-1964CrossRefGoogle ScholarPubMed
60Ripley, B. et al. (2001) CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57, 2253-2258CrossRefGoogle ScholarPubMed
61Manzella, D. et al. (2002) Soluble leptin receptor and insulin resistance as determinant of sleep apnea. Int J Obes Relat Metab Disord 26, 370-375CrossRefGoogle ScholarPubMed
62Young, T., Peppard, P.E. and Gottlieb, D.J. (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165, 1217-1239CrossRefGoogle ScholarPubMed
63Lavie, P. (2008) Who was the first to use the term Pickwickian in connection with sleepy patients? History of sleep apnoea syndrome. Sleep Med Rev 12, 5-17CrossRefGoogle ScholarPubMed
64Auchincloss, J.H. Jr., Cook, E. and Renzetti, A.D. (1955) Clinical and physiological aspects of a case of obesity, polycythemia and alveolar hypoventilation. J Clin Invest 34, 1537-1545CrossRefGoogle ScholarPubMed
65Rapoport, D.M. et al. (1986) Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian syndrome”. Chest 89, 627-635CrossRefGoogle ScholarPubMed
66Villa, M.P. et al. (2000) Sleep apnoea in children with diabetes mellitus: effect of glycaemic control. Diabetologia 43, 696-702CrossRefGoogle ScholarPubMed
67Polotsky, V.Y. et al. (2001) The impact of insulin-dependent diabetes on ventilatory control in the mouse. Am J Respir Crit Care Med 163, 624-632CrossRefGoogle ScholarPubMed
68Punjabi, N.M. et al. (2004) Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 160, 521-530CrossRefGoogle ScholarPubMed
69Burdakov, D., Gerasimenko, O. and Verkhratsky, A. (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25, 2429-2433CrossRefGoogle ScholarPubMed
70Matsumura, T. et al. (2003) Plasma orexin-A levels and body composition in COPD. Chest 123, 1060-1065CrossRefGoogle ScholarPubMed
71Lagi, A. et al. (2001) Cerebral vasoconstriction in vasovagal syncope: any link with symptoms? A transcranial Doppler study. Circulation 104, 2694-2698CrossRefGoogle ScholarPubMed
72Norcliffe-Kaufmann, L.J., Kaufmann, H. and Hainsworth, R. (2008) Enhanced vascular responses to hypocapnia in neurally mediated syncope. Ann Neurol 63, 288-294CrossRefGoogle ScholarPubMed
73Antunes, V.R. et al. (2001) Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 281, R1801-1807CrossRefGoogle ScholarPubMed
74Dergacheva, O. et al. (2005) Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus. J Pharmacol Exp Ther 314, 1322-1327CrossRefGoogle ScholarPubMed
75Geerling, J.C., Mettenleiter, T.C. and Loewy, A.D. (2003) Orexin neurons project to diverse sympathetic outflow systems. Neuroscience 122, 541-550CrossRefGoogle ScholarPubMed
76Smith, B.N. et al. (2002) Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2. Neuroscience 115, 707-714CrossRefGoogle ScholarPubMed
77Smith, P.M., Connolly, B.C. and Ferguson, A.V. (2002) Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res 950, 261-267CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Patient-support websites on sleep-related disorders and narcolepsy can be found at:

Nishino, S. and Sakurai, T. (2006) The Orexin/Hypocretin System: Physiology and Pathophysiology (Contemporary Clinical Neuroscience) (1st edn), Humana Press Inc., USAGoogle Scholar
de Lecea, L. and Sutcliffe, J.G. (2005) Hypocretins: Integrators of Physiological Signals (1st edn), Springer-Verlag, New York Inc., USACrossRefGoogle Scholar
Simerly, R.B. (2004) Anatomical substrates of hypothalamic integration. In The Rat Nervous System (3rd edn) (Paxinos, G., ed.), pp. 335-368, Elsevier, USACrossRefGoogle Scholar
Nishino, S. and Sakurai, T. (2006) The Orexin/Hypocretin System: Physiology and Pathophysiology (Contemporary Clinical Neuroscience) (1st edn), Humana Press Inc., USAGoogle Scholar
de Lecea, L. and Sutcliffe, J.G. (2005) Hypocretins: Integrators of Physiological Signals (1st edn), Springer-Verlag, New York Inc., USACrossRefGoogle Scholar
Simerly, R.B. (2004) Anatomical substrates of hypothalamic integration. In The Rat Nervous System (3rd edn) (Paxinos, G., ed.), pp. 335-368, Elsevier, USACrossRefGoogle Scholar