Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T21:32:14.297Z Has data issue: false hasContentIssue false

Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases

Published online by Cambridge University Press:  10 June 2011

Paula Grammas*
Affiliation:
Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA. Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Joseph Martinez
Affiliation:
Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Bradley Miller
Affiliation:
Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA. Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
*
*Corresponding author: Paula Grammas, Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street Stop 9424, Lubbock, TX 79430, USA. E-mail: [email protected]

Abstract

Diseases of the central nervous system (CNS) pose a significant health challenge, but despite their diversity, they share many common features and mechanisms. For example, endothelial dysfunction has been implicated as a crucial event in the development of several CNS disorders, such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, multiple sclerosis, human immunodeficiency virus (HIV)-1-associated neurocognitive disorder and traumatic brain injury. Breakdown of the blood–brain barrier (BBB) as a result of disruption of tight junctions and transporters, leads to increased leukocyte transmigration and is an early event in the pathology of these disorders. The brain endothelium is highly reactive because it serves as both a source of, and a target for, inflammatory proteins and reactive oxygen species. BBB breakdown thus leads to neuroinflammation and oxidative stress, which are implicated in the pathogenesis of CNS disease. Furthermore, the physiology and pathophysiology of endothelial cells are closely linked to the functioning of their mitochondria, and mitochondrial dysfunction is another important mediator of disease pathology in the brain. The high concentration of mitochondria in cerebrovascular endothelial cells might account for the sensitivity of the BBB to oxidant stressors. Here, we discuss how greater understanding of the role of BBB function could lead to new therapeutic approaches for diseases of the CNS that target the dynamic properties of brain endothelial cells.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Florey, Lord. (1966) The endothelial cell. British Medical Journal 2, 487-490CrossRefGoogle ScholarPubMed
2Gimbrone, M.A., Cotran, R.S. and Folkman, J. (1974) Human vascular endothelial cells in culture. Growth and DNA synthesis. Journal of Cell Biology 60, 673-684CrossRefGoogle ScholarPubMed
3Nachman, R.L. and Jaffe, E.A. (2004) Endothelial cell culture: beginnings of modern vascular biology. Journal of Clinical Investigation 114, 1037-1040CrossRefGoogle ScholarPubMed
4Aird, W.C. (2003) Endothelial cell heterogeneity. Critical Care Medicine 31, 5221-5230CrossRefGoogle ScholarPubMed
5Chi, J.T. et al. (2003) Endothelial cell diversity revealed by global expression profiling. Proceedings of the National Academy of Sciences of the United States of America 100, 10623-10628CrossRefGoogle ScholarPubMed
6Zlokovic, B.V. (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178-201CrossRefGoogle ScholarPubMed
7Guo, S. and Lo, E.H. (2009) Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40, S4-S7CrossRefGoogle ScholarPubMed
8Pardridge, W.M. (1983) Brain metabolism: a perspective from the blood–brain barrier. Physiological Reviews 63, 1481-1535CrossRefGoogle ScholarPubMed
9Ribatti, D. et al. (2006) Development of the blood–brain barrier: a historical point of view. The Anatomical Record: Neuroanatomist 289B, 3-8CrossRefGoogle Scholar
10Reese, T.S. and Karnovsky, M.J. (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. Journal of Cell Biology 34, 207-217CrossRefGoogle ScholarPubMed
11Hardebo, J.E. et al. (1979) Studies on the enzymatic blood–brain barrier: qualitative measurements of DOPA decarboxylase in the wall of microvessels as related to the parenchyma in various CNS regions. Acta Physiologica Scandinavica 105, 453-460CrossRefGoogle Scholar
12Kalaria, R.N. and Harik, S.I. (1987) Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. Journal of Neurochemistry 49, 856-864CrossRefGoogle ScholarPubMed
13Gerhart, D.Z. (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. American Journal of Physiology (London) 273, E207-E213Google ScholarPubMed
14Smith, Q.R. and Stoll, J. (1998) Blood-brain barrier amino acid transport. In Introduction to the Blood–Brain Barrier (Pardridge, W.M., ed), pp. 188-197, Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
15Tsuji, A. (2005) Small molecular drug transfer across the blood–brain barrier via carrier-mediated transport system. NeuroRx®: The Journal of the American Society for Experimental Therapeutics 2, 54-62CrossRefGoogle Scholar
16Ohtsuki, S. and Terasaki, T. (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharmacology Research 24, 1745-1758CrossRefGoogle Scholar
17Spector, R. and Johanson, C.E. (2007) Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. Journal of Neurochemistry 103, 425-438CrossRefGoogle Scholar
18Attwell, D. et al. (2010) Glial and neuronal control of brain blood flow. Nature 468, 232-243CrossRefGoogle ScholarPubMed
19Park, J.A. et al. (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochemical and Biophysical Research Communications 311, 247-253CrossRefGoogle ScholarPubMed
20Lok, J. et al. (2007) Cell-cell signaling in the neurovascular unit. Neurochemical Research 32, 2032-2045CrossRefGoogle ScholarPubMed
21Lai, C.H., Kuo, K.H. (2005) The critical component to establish in vitro BBB model: pericyte. Brain Research Reviews 50, 258-265CrossRefGoogle ScholarPubMed
22Krueger, M. and Bechmann, I. (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58, 1-10CrossRefGoogle Scholar
23Iadecola, C. (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews Neuroscience 5, 347-360CrossRefGoogle ScholarPubMed
24Benarroch, E. (2007) Neurovascular unit dysfunction: a vascular component of Alzheimer's disease? Neurology 68, 1730-1732Google Scholar
25Zlokovic, B.V. (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends in Neuroscience 28, 202-208CrossRefGoogle ScholarPubMed
26Zacchigna, S., Lambrechts, D. and Carmeliet, P. (2008) Neurovascular signaling defects in neurodegeneration. Nature Reviews Neuroscience 9, 169-181CrossRefGoogle ScholarPubMed
27Schnitzer, J.E. (1998) Vascular targeting as a strategy for cancer. New England Journal of Medicine 339, 472-474CrossRefGoogle ScholarPubMed
28Versari, D. et al. (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32, S314-S321CrossRefGoogle ScholarPubMed
29Tang, E.H. and Vanhoutte, P.M. (2010) Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Archiv: European Journal of Physiology 459, 99501004CrossRefGoogle ScholarPubMed
30Gimbrone, M.A. et al. (1997) Hemodynamics, endothelial gene expression and atherogenesis. Annals of the New York Academy of Science 811, 1-10CrossRefGoogle ScholarPubMed
31Barcia, C. et al. (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission 112, 1237-1248CrossRefGoogle ScholarPubMed
32Banks, W.A., Ercal, N. and Price, T.O. (2006) The blood–brain barrier in neuroAIDS. Current HIV Research 4, 259-266CrossRefGoogle ScholarPubMed
33Morel, N. et al. (2008) Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. Journal of Trauma 64, 698-704Google ScholarPubMed
34Zhong, Z. et al. (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neuroscience 11, 420-422CrossRefGoogle ScholarPubMed
35Altman, R. and Rutledge, J.C. (2010) The vascular contribution to Alzheimer's disease. Clinical Science (London) 119, 407-421CrossRefGoogle ScholarPubMed
36Alexander, J.S. et al. (2011) Multiple sclerosis and cerebral endothelial dysfunction: mechanisms. Pathophysiology 18, 3-12CrossRefGoogle ScholarPubMed
37Israel, A.K. et al. (2011) Peripheral endothelial dysfunction in patients suffering from acute schizophrenia: a potential marker for cardiovascular morbidity? Schizophrenia Research 128, 44-50CrossRefGoogle ScholarPubMed
38Chironi, G.N. et al. (2009) Endothelial microparticles in diseases. Cell and Tissue Research 335, 143-151CrossRefGoogle ScholarPubMed
39Boulanger, C.M. (2010) Microparticles, vascular function and hypertension. Current Opinion in Nephrology and Hypertension 19, 177-180CrossRefGoogle ScholarPubMed
40Jung, K.H. et al. (2009) Circulating endothelial microparticles as a marker of cerebrovascular disease. Annals of Neurology 66, 191-199CrossRefGoogle ScholarPubMed
41Minagar, A. et al. (2001) Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 56, 1319-1324CrossRefGoogle ScholarPubMed
42Jy, W. et al. (2004) Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Frontiers in Bioscience 9, 3137-3144CrossRefGoogle ScholarPubMed
43Jimenez, J. et al. (2005) Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes. Multiple Sclerosis 11, 310-315CrossRefGoogle ScholarPubMed
44Shcherbakova, I.V. et al. (2005) Markers of endothelial dysfunction in attack-like schizophrenia. Zhurnal Nevrologii I Psikhiatri Imeni S. S. Korsakova 105, 43-46Google ScholarPubMed
45Ukkonen, M. et al. (2007) Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis. Multiple Sclerosis 13, 701-701CrossRefGoogle ScholarPubMed
46Ewers, M., Mielke, M.M. and Hampel, H. (2010) Blood-based biomarkers of microvascular pathology in Alzheimer's disease. Experimental Gerontology 45, 75-79CrossRefGoogle ScholarPubMed
47Dzau, V.J. et al. (2005) Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 46, 7-18CrossRefGoogle ScholarPubMed
48Van Craenenbroeck, E.M. and Conraads, V.M. (2010) Endothelial progenitor cells in vascular health: focus on lifestyle. Microvascular Research 79, 184-192CrossRefGoogle ScholarPubMed
49Asahara, T. et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967CrossRefGoogle ScholarPubMed
50Möbius-Winkler, S. et al. (2009) Endothelial progenitor cells: implications for cardiovascular disease. Cytometry 75A, 25-37CrossRefGoogle Scholar
51Umemura, T. and Higashi, Y. (2008) Endothelial progenitor cells: therapeutic target for cardiovascular diseases. Journal of Pharmacological Science 108, 1-6CrossRefGoogle ScholarPubMed
52Lee, S.T. et al. (2009) Reduced circulating angiogenic cells in Alzheimer disease. Neurology 72, 1853-1863CrossRefGoogle ScholarPubMed
53Wu, Z. et al. (2005) Role of MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer's disease. Nature Medicine 11, 959-965CrossRefGoogle Scholar
54Oldendorf, W.H., Cornford, M.E. and Brown, W.J. (1977) The apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Annals of Neurology 1, 409-417CrossRefGoogle ScholarPubMed
55Förster, C. (2008) Tight junctions and the modulation of barrier function in disease. Histochemistry and Cell Biology 130, 55-70CrossRefGoogle ScholarPubMed
56Arhart, R.W. (2010) A possible haemodynamic mechanism for amyotrophic lateral sclerosis. Medical Hypotheses 75, 341-346CrossRefGoogle ScholarPubMed
57Weir, B. (2010) Multiple sclerosis – a vascular etiology? Canadian Journal of Neurological Science 37, 745-757CrossRefGoogle ScholarPubMed
58Bennett, J. et al. (2010) Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. Journal of Immunology 229, 180-191Google ScholarPubMed
59Plumb, J. et al. (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathology 12, 154-169CrossRefGoogle ScholarPubMed
60Kirk, J. et al. (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibers of vessel and is associated with blood–brain barrier leakage and active demyelination. Journal of Pathology 201, 319-327CrossRefGoogle ScholarPubMed
61Minagar, A. and Alexander, J.S. (2003) Blood–brain barrier disruption in multiple sclerosis. Multiple Sclerosis 9, 540-549CrossRefGoogle ScholarPubMed
62Holman, D.W., Klein, R.S. and Ransohoff, R.M. (2011) The blood–brain barrier, chemokines and multiple sclerosis. Biochimcia et Biophysica Acta 1812, 220-230CrossRefGoogle ScholarPubMed
63Garbuzova-Davis, S. et al. (2007) Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2, e1205CrossRefGoogle ScholarPubMed
64Engelhardt, J.I. and Appel, S.H. (1990) IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Archives of Neurology 47, 1210-1216CrossRefGoogle ScholarPubMed
65Nicaise, C. et al. (2009) Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Research 1301, 152-162CrossRefGoogle ScholarPubMed
66Ances, B.M. and Clifford, D.B. (2008) HIV-associated neurocognitive disorders and the impact of combination antiretroviral therapies. Current Neurology and Neuroscience Reports 8, 455-461CrossRefGoogle ScholarPubMed
67Kanmogne, G.D. et al. (2007) HIV-1 gp120 compromises blood–brain barrier integrity and enhances monocyte migration across blood–brain barrier: implication for viral neuropathogenesis. Journal of Cerebral Blood Flow and Metabolism 27, 123-134CrossRefGoogle ScholarPubMed
68Ramirez, S.H. et al. (2010) Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood–brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. Journal of Neuroscience 30, 9454-9464CrossRefGoogle ScholarPubMed
69Yang, B. et al. (2008) HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood–brain barrier: modulatory effects of STAT1 signaling. Microvascular Research 77, 212-219CrossRefGoogle ScholarPubMed
70Ricardo-Dukelow, M. et al. (2007) HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome: new insights into blood-brain barrier dysfunction for HIV-1-associated dementia. Journal of Neuroimmunology 185, 37-46CrossRefGoogle ScholarPubMed
71Shen, S. and Zhang, W. (2010) ABC transporters and drug efflux at the blood–brain barrier. Reviews in Neuroscience 21, 29-53CrossRefGoogle ScholarPubMed
72Ferreira, I.L. et al. (2010) Multiple defects in energy metabolism in Alzheimer's disease. Current Drug Targets 11, 1193-1206CrossRefGoogle ScholarPubMed
73Chetelat, G. et al. (2003) Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology 60, 1374-1377CrossRefGoogle ScholarPubMed
74Gibson, G.E. and Shi, Q. (2010) A mitocentric view of Alzheimer's disease suggests multi-faceted treatments. Journal of Alzheimer's Disease 20, S591-S607CrossRefGoogle ScholarPubMed
75Kalaria, R.N. and Harik, S.I. (1989) Reduced glucose transporter at the blood–brain barrier in cerebral cortex in Alzheimer disease. Journal of Neurochemistry 53, 1083CrossRefGoogle ScholarPubMed
76Pimplikar, S.W. (2009) Reassessing the amyloid cascade hypothesis of Alzheimer's disease. International Journal of Biochemistry and Cell Biology 41, 1261-1268CrossRefGoogle ScholarPubMed
77Deane, R., Bell, R.D., Sagare, A., and Zlokovic, B.V. (2009) Clearance of amyloid-β peptide across the blood–brain barrier: implications for therapies in Alzheimer's disease. CNS and Neurological Disorders Drug Targets 8, 16-30CrossRefGoogle ScholarPubMed
78Deane, R. et al. (2004) RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke 35, 2628-2631CrossRefGoogle ScholarPubMed
79Bell, R.D. et al. (2009) SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nature Cell Biology 11, 143-153CrossRefGoogle ScholarPubMed
80Deane, R. et al. (2003) RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine 9, 907-913CrossRefGoogle ScholarPubMed
81Yan, S.D. et al. (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382, 685-691CrossRefGoogle ScholarPubMed
82Kumar-Singh, S. et al. (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. American Journal of Pathology 167, 527-543CrossRefGoogle ScholarPubMed
83Shibata, M. et al. (2000) Clearance of Alzheimer's amyloid β(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. Journal of Clinical Investigation 106, 1489-1499CrossRefGoogle ScholarPubMed
84Jaeger, L.B. (2009) Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain, Behavior and Immunology 23, 507-517CrossRefGoogle ScholarPubMed
85Qian, L., Flood, P.M. and Hong, J.S. (2010) Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. Journal of Neural Transmission 117, 971-999CrossRefGoogle Scholar
86Hawkins, R.A. et al. (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. Journal of Nutrition 136, 218S-226SCrossRefGoogle ScholarPubMed
87Carvey, P.M. et al. (2005) 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. European Journal of Neuroscience 22, 1158-1168CrossRefGoogle ScholarPubMed
88Kortekaas, R. et al. (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Annals of Neurology 57, 176-179CrossRefGoogle ScholarPubMed
89Farkas, E. et al. (2000) Pathological features of cerebral cortical capillaries are double in Alzheimer's disease and Parkinson's disease. Acta Neuropathologica (Berlin) 100, 395-402CrossRefGoogle ScholarPubMed
90Ohtsuki, S. et al. (2010) Reduction of L-type amino acid transporter 1 mRNA expression in brain capillaries in a mouse model of Parkinson's disease. Biological and Pharmaceutical Bulletin 33, 1250-1252CrossRefGoogle Scholar
91Lee, C.G. et al. (2004) MDR1, the blood–brain barrier transporter, is associated with Parkinson's disease in ethnic Chinese. Journal of Medical Genetics 41, e60CrossRefGoogle ScholarPubMed
92Bartels, A.L. et al. (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, SP and MSA. Journal of Neural Transmission 115, 1001-1009CrossRefGoogle Scholar
93Hartz, A.M.S. et al. (2003) Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-α and lipopolysaccharide. Molecular Pharmacology 69, 462-470CrossRefGoogle Scholar
94Funke, C. et al. (2009) Genetic analysis of coding SNPs in blood-brain barrier transporter MDR1 in European Parkinson's disease patients. Journal of Neural Transmission 116, 443-450CrossRefGoogle ScholarPubMed
95Westerlund, M. et al. (2009) Association of polymorphism in the ABCB1 gene with Parkinson's disease. Parkinsonism and Related Disorders 15, 422-424CrossRefGoogle ScholarPubMed
96Grammas, P. (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. Journal of Neuroinflammation 25, 8-26Google Scholar
97Harris, L.W. et al. (2008) The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PloS ONE 3, e3964CrossRefGoogle ScholarPubMed
98Grammas, P., Moore, P. and Weigel, P.H. (1999) Microvessels from Alzheimer's disease brain kill neurons in vitro. American Journal of Pathology 154, 337-342CrossRefGoogle ScholarPubMed
99Grammas, P. (2000) A damaged microcirculation contributes to neuronal cell death in Alzheimer's disease. Neurobiology of Aging 21, 199-205CrossRefGoogle ScholarPubMed
100Yin, X. et al. (2010) Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer's disease. American Journal of Pathology 176, 1600-1606CrossRefGoogle ScholarPubMed
101Huang, C. et al. (2008) JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. Journal of Neuroimmunology 204, 118-125CrossRefGoogle ScholarPubMed
102Choi, M.S. et al. (2008) Activation of protease-activated receptor1 mediates induction of matrix metalloproteinase-9 by thrombin in rat primary astrocytes. Brain Research Bulletin 76, 368-375CrossRefGoogle ScholarPubMed
103Rosenberg, G.A. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurology 8, 205-216CrossRefGoogle ScholarPubMed
104Grammas, P. and Ovase, R. (2001) Inflammatory factors are elevated in brain microvessels in Alzheimer's disease. Neurobiology of Aging 22, 837-842CrossRefGoogle ScholarPubMed
105Grammas, P., Samany, P.G. and Thirumangalakudi, L. (2006) Thrombin and inflammatory proteins are elevated in Alzheimer's disease microvessels: implications for disease pathogenesis. Journal of Alzheimer's Disease 9, 51-58CrossRefGoogle ScholarPubMed
106Bugno, M. et al. (1999) Reprogramming of TIMP-1 and TIMP-3 expression profiles in brain microvascular endothelial cells and astrocytes in response to proinflammatory cytokines. FEBS Journal 448, 9-14CrossRefGoogle ScholarPubMed
107Vilalta, A. et al. (2010) Matrix metalloproteinases in neurological brain lesions: a new therapeutic target? Reviews in Neurology 51, 95-107Google ScholarPubMed
108Zhang, H. et al. (2010) Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. The Neuroscientist 16, 156-170CrossRefGoogle ScholarPubMed
109Sternlicht, M.D. and Werb, Z. (2001) How matrix metalloproteinases regulate cell behavior. Annual Review of Cellular and Developmental Biology 17, 463-516CrossRefGoogle ScholarPubMed
110Visse, R. and Nagase, H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Circulation Research 92, 827-839CrossRefGoogle ScholarPubMed
111del Zoppo, G.J. (2010) The neurovascular unit, matrix proteases, and innate inflammation. Annals of the New York Academy of Sciences 1207, 46-49CrossRefGoogle ScholarPubMed
112Ries, C. and Petrides, P.E. (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biology Chemistry Hoppe-Seyler 376, 345-355Google ScholarPubMed
113Sokolova, E. and Reiser, G. (2008) Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases. Thrombosis and Haemostasis 100, 576-581CrossRefGoogle ScholarPubMed
114Maragoudakis, M.E., Tsopanoglou, N.E. and Andriopoulou, P. (2002) Mechanism of thrombin-induced angiogenesis. Biochemical Society Transactions 20, 173-177CrossRefGoogle Scholar
115Cunningham, L.A., Wetzel, M. and Rosenberg, G.A. (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50, 329-339CrossRefGoogle ScholarPubMed
116Amantea, D. et al. (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS Journal 276, 13-26CrossRefGoogle ScholarPubMed
117Schönbeck, U., Mach, F. and Libby, P. (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1 independent pathway of IL-1 beta processing. Journal of Immunology 161, 3340-3346CrossRefGoogle ScholarPubMed
118Woessner, J.F. and Nagase, H. (2000) Matrix Metalloproteinases and TIMPs, Oxford University Press, New YorkCrossRefGoogle Scholar
119Sheu, B.C. et al. (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Research 61, 237-242Google ScholarPubMed
120Rosenberg, G.A. (2002) Matrix metalloproteinases and neuroinflammation in multiple sclerosis. The Neuroscientist 8, 586-595CrossRefGoogle ScholarPubMed
121Persidsky, Y. et al. (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood 107, 4770-4780CrossRefGoogle ScholarPubMed
122Huang, W. et al. (2009) PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulation of matrix metalloproteinase and protease activities. FASEB Journal 23, 1596-1606CrossRefGoogle Scholar
123Dhawan, S. et al. (1995) HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. Journal of Immunology 154, 422-432CrossRefGoogle ScholarPubMed
124Thirumangalakudi, L. et al. (2006) Angiogenic proteins are expressed by brain blood vessels in Alzheimer's disease. Journal of Alzheimer's Disease 10, 111-118CrossRefGoogle ScholarPubMed
125Miyakawa, T. et al. (1982) The relationship between senile plaques and cerebral blood vessels in Alzheimer's disease and senile dementia. Morphological mechanism of senile plaque production. Virchows Archives (Cellular Pathology) 40, 121-129CrossRefGoogle ScholarPubMed
126Lee, E.J. et al. (2010) Alpha-synuclein activates microglia by inducing the expression of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. Journal of Immunology 185, 615-623CrossRefGoogle ScholarPubMed
127Tamo, W. et al. (2002) Expression of alpha-synuclein, the precursor of non-amyloid beta component of Alzheimer's disease amyloid, in human cerebral blood vessels. Neuroscience Letters 326, 5-8CrossRefGoogle ScholarPubMed
128Kim, S.T. et al. (2010) Matrix metalloproteinase-3 contributes to vulnerability of the nigral dopaminergic neurons. Neurochemistry International 56, 161-167CrossRefGoogle ScholarPubMed
129Mizoguchi, H. et al. (2009) Matrix metalloproteinase-9 inhibition improves amyloid-β-mediated cognitive impairment and neurotoxicity in mice. Journal of Pharmacology and Experimental Therapeutics 331, 14-22CrossRefGoogle ScholarPubMed
130Levin, J. et al. (2009) Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Experimental Neurology 214, 201-208CrossRefGoogle Scholar
131Pimenta de Castro, I., Martins, L.M. and Tufi, R. (2010) Mitochondrial quality control and neurological disease: an emerging connection. Expert Reviews in Molecular Medicine 12, e12Google Scholar
132Reeve, A.K., Krishnan, K.J. and Turnbull, D. (2008) Age related mitochondrial degenerative disorders in humans. Biotechnology Journal 3, 750-756CrossRefGoogle ScholarPubMed
133Müller, W.E. et al. (2010) Mitochondrial dysfunction: Common final pathway in brain aging and Alzheimer's disease-Therapeutic aspects. Molecular Neurobiology 41, 159-171CrossRefGoogle ScholarPubMed
134Sakar, D. and Fisher, P.D. (2006) Molecular mechanisms of aging-associated inflammation. Cancer Letters 236, 3-23Google Scholar
135Tripathy, D. et al. (2010) Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging. Journal of Neuroinflammation 7, 63CrossRefGoogle ScholarPubMed
136Victor, V.M. and Rocha, M. (2007) Targeting antioxidants to mitochondria: potential new therapeutic strategy for cardiovascular diseases. Current Pharmaceutical Design 13, 845-863CrossRefGoogle ScholarPubMed
137Puddu, P. et al. (2009) The emerging role cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis. Journal of Biomedical Science 16, 112-121CrossRefGoogle ScholarPubMed
138Davidson, S.M. and Duchen, M.R. (2007) Endothelial mitochondria: contributing to vascular function and disease. Circulation Research 100, 1128-1141CrossRefGoogle Scholar
139Kolev, K. et al. (2003) Matrix metalloproteinase-9 expression in post-hypoxic human brain capillary endothelial cells: H2O2 as a trigger and NF-kappaB as a signal transducer. Thrombosis and Haemostasis 90, 528-537CrossRefGoogle ScholarPubMed
140Pu, P.B., Lu, J. and Moochhala, S. (2009) Involvement of ROS in BBB dysfunction. Free Radical Research 43, 348-364Google Scholar
141Hamdheydari, L. et al. (2003) Oxidized LDLs affect nitric oxide and radical generation in brain endothelial cells. Biochemical Biophysical Research Communications 311, 486-490CrossRefGoogle ScholarPubMed
142Chang, H.C. et al. (2010) Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. Journal of Cerebral Blood Flow and Metabolism 3, 842-54Google Scholar
143Closhen, D. et al. (2010) CRP-induced levels of oxidative stress are higher in brain than aortic endothelial cells. Cytokine 50, 117-120CrossRefGoogle ScholarPubMed
144Martin, L.J. (2010) Mitochondrial pathobiology in Parkinson's disease and amyotrophic lateral sclerosis. Journal of Alzheimer's disease 20, S335-S356CrossRefGoogle ScholarPubMed
145Fernandez-Checa, J.C. et al. (2010) Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurological Disorders and Drug Targets 9, 439-454CrossRefGoogle ScholarPubMed
146Lopez, G. and Sidransky, E. (2010) Autosomal recessive mutations in the development of Parkinson's disease. Biomarkers in Medicine 4, 713-721CrossRefGoogle ScholarPubMed
147Casetta, I., Govoni, V. and Granieri, E. (2005) Oxidative stress, antioxidants and neurodegenerative diseases. Current Pharmacologic Design 11, 2033-2052CrossRefGoogle ScholarPubMed
148Tanner, C.M. et al. (2011) Rotenone, paraquat and Parkinson's disease. Environmental Health Perspectives January 26 [Epub ahead of print]CrossRefGoogle ScholarPubMed
149dos Santos, A.P. et al. (2010) Rat brain endothelial cells are a target of manganese toxicity. Brain Research 1326, 152-161CrossRefGoogle ScholarPubMed
150Aliev, G. et al. (2003) Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Alzheimer disease. Neurotoxicity Research 5, 491-504CrossRefGoogle Scholar
151Claudio, L. (1996) Ultrastructural features of the blood–brain barrier in biopsy tissue from Alzheimer's disease patients. Acta Neuropathologica 91, 6-14CrossRefGoogle ScholarPubMed
152Xu, J. et al. (2001) Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. Journal of Cerebral Blood Flow and Metabolism 21, 702-710CrossRefGoogle ScholarPubMed
153Wong, P.C. et al. (1995) An adverse property of a familial ALS-SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105-1116CrossRefGoogle Scholar
154Kong, J. and Xu, Z. (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. Journal of Neuroscience 18, 32410-3250CrossRefGoogle ScholarPubMed
155Pedrini, S. et al. (2010) ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Human Molecular Genetics 19, 2974-2986CrossRefGoogle ScholarPubMed
156Pardridge, W.M. (2005) The blood–brain barrier and neurotherapeutics. NeuroRx®: The Journal of the American Society for Experimental Therapeutics 2, 1-2CrossRefGoogle ScholarPubMed
157Agarwal, S. et al. (2011) Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Reviews in Molecular Medicine 13, e17CrossRefGoogle ScholarPubMed
158Lorenzl, S. et al. (2003) Tissue inhibitors of matrix metalloproteinases in neuromuscular disease. Journal of the Neurological Sciences 207, 71-76CrossRefGoogle Scholar
159Renaud, S. and Leppert, D. (2007) Matrix metalloproteinases in neuromuscular disease. Muscle and Nerve 36, 1-13CrossRefGoogle ScholarPubMed
160Horstmann, S. et al. (2010) Matrix metalloproteinases in peripheral blood in cerebrospinal fluid in patients with Alzheimer's disease. International Psychogeriatrics 22, 966-972CrossRefGoogle ScholarPubMed
161Sastre-Garriga, J. et al. (2004) Decreased MMP-9 production in primary progressive multiple sclerosis patients. Multiple Sclerosis 10, 376-380CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Neuwelt, E. et al. (2008) Strategies to advance translational research into brain barriers. Lancet Neurology 7, 84-96CrossRefGoogle ScholarPubMed
Zlokovic, B. (2010) Neurodegeneration and the neurovascular unit. Nature Medicine 16, 1370-1371CrossRefGoogle ScholarPubMed
Grammas, P. et al. (2008) Neurodegeneration and the brain barriers. www.ibbsoc.org/PDFs/Neurodegeneration.pdfGoogle Scholar