Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T05:28:33.729Z Has data issue: false hasContentIssue false

Antibody-based therapy of leukaemia

Published online by Cambridge University Press:  01 September 2009

John C. Morris*
Affiliation:
Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MDUSA.
Thomas A. Waldmann
Affiliation:
Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MDUSA.
*
*Corresponding author: John C. Morris, Co-Director Clinical Trials, Metabolism Branch, Center for Cancer Research National Cancer Institute, Mark O. Hatfield Clinical Research Center, Room 4-5330, 10 Center Drive, Bethesda, Maryland 20892-1457, USA. Tel: +1 301 402 2912; Fax: +1 301 402 1001; E-mail: [email protected]

Abstract

Over the past decade, monoclonal antibodies have dramatically impacted the treatment of haematological malignancies, as evidenced by the effect of rituximab on the response rate and survival of patients with follicular and diffuse large B cell non-Hodgkin's lymphoma. Currently, only two monoclonal antibodies – the anti-CD33 immunotoxin gemtuzumab ozogamicin and the CD52-directed antibody alemtuzumab – are approved for treatment of relapsed acute myeloid leukaemia in older patients and B cell chronic lymphocytic leukaemia, respectively. Although not approved for such treatment, alemtuzumab is also active against T cell prolymphocytic leukaemia, cutaneous T cell lymphoma and Sézary syndrome, and adult T cell leukaemia and lymphoma. In addition, rituximab has demonstrated activity against B cell chronic lymphocytic and hairy cell leukaemia. Monoclonal antibodies targeting CD4, CD19, CD20, CD22, CD23, CD25, CD45, CD66 and CD122 are now being studied in the clinic for the treatment of leukaemia. Here, we discuss how these new antibodies have been engineered to reduce immunogenicity and improve antibody targeting and binding. Improved interactions with Fc receptors on immune effector cells can enhance destruction of target cells through antibody-dependent cellular cytotoxicity and complement-mediated cell lysis. The antibodies can also be armed with cellular toxins or radionuclides to enhance the destruction of leukaemia cells.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Ehrlich, P. (1899–1900) Croonian Lecture: On immunity with special reference to cell life Proceedings of the Royal Society of London 66, 424-448CrossRefGoogle Scholar
2Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-497CrossRefGoogle ScholarPubMed
3Byrd, J.C. et al. (2001) Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. Journal of Clinical Oncology 19, 2153-2164CrossRefGoogle ScholarPubMed
4Hagberg, H. (1999) Chimeric monoclonal anti-CD20 antibody (rituximab) – an effective treatment for a patient with relapsing hairy cell leukaemia. Medical Oncology 16, 221-222CrossRefGoogle ScholarPubMed
5Swann, P.G. et al. (2008) Considerations for the development of therapeutic monoclonal antibodies. Current Opinion in Immunology 20, 493-499CrossRefGoogle ScholarPubMed
6Liu, X.Y., Pop, L.M. and Vitetta, E.S. (2008) Engineering therapeutic monoclonal antibodies. Immunological Reviews 222, 9-27CrossRefGoogle ScholarPubMed
7Nissim, A. and Chernajovsky, Y. (2008) Historical development of monoclonal antibody therapeutics. In Handbook of Experimental Pharmacology: Therapeutic Antibodies. (Chernajovsky, Y. and Nissim, A., eds.) 181, pp. 3-18, SpringerCrossRefGoogle Scholar
8Lonberg, N. (2008) Human monoclonal antibodies from transgenic mice. In Handbook of Experimental Pharmacology: Therapeutic Antibodies, (Chernajovsky, Y. and Nissim, A., eds.) 181, pp. 69-97, SpringerCrossRefGoogle Scholar
9Veri, M.C. et al. (2007) Monoclonal antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological and functional characterization. Immunology 121, 392-404CrossRefGoogle ScholarPubMed
10Perz, J.Topaly, J., Fruehauf, S., Hensel, M., and Ho, A.D. (2002) Level of CD 20-expression and efficacy of rituximab treatment in patients with resistant or relapsing B-cell prolymphocytic leukemia and B-cell chronic lymphocytic leukemia. Leukemia and Lymphoma 43, 149-151CrossRefGoogle ScholarPubMed
11Coiffier, B. et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. New England Journal of Medicine 346, 235-242CrossRefGoogle ScholarPubMed
12Sehn, L.H. et al. (2005) Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. Journal of Clinical Oncology 23, 5027-5033CrossRefGoogle ScholarPubMed
13Marcus, R. et al. (2008) Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. Journal of Clinical Oncology 26, 4579-4586CrossRefGoogle ScholarPubMed
14Kantarjian, H. et al. (2008) Therapeutic advances in leukemia and myelodysplastic syndrome over the past 40 years. Cancer 113 (Suppl.), 1933-1952CrossRefGoogle ScholarPubMed
15Freeman, S.D., Kelm, S., Barber, E.K., and Crocker, P.R. (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85, 2005-2012CrossRefGoogle ScholarPubMed
16Crocker, P.R. and Redelinghuys, P. (2008) Siglecs as positive and negative regulators of the immune system. Biochemical Society Transactions 36, 1467-1471CrossRefGoogle ScholarPubMed
17Dinndorf, P.A., Andrews, R.G., Benjamin, D., Ridgway, D., Wolff, L. and Bernstein, I.D. (1986) Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 67, 1048-1053CrossRefGoogle ScholarPubMed
18Hamann, P.R. et al. (2002) An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chemistry 13, 40-66CrossRefGoogle ScholarPubMed
19Zein, N., Sinha, A.M., McGahren, W.J. and Ellestad, G.A. (1988) Calicheamicin gamma 1: An antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240, 1198-1201CrossRefGoogle ScholarPubMed
20van Der Velden, V.H. et al. (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97, 3197-3204CrossRefGoogle ScholarPubMed
21Naito, K. et al. (2000) Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab ozogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 14, 1436-1443CrossRefGoogle ScholarPubMed
22Dowell, J.A., Korth-Bradley, J., Liu, H., King, S.P. and Berger, M.S. (2001) Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. Journal of Clinical Pharmacology 41, 1206-1214CrossRefGoogle ScholarPubMed
23Sievers, E.L. et al. (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678-3684CrossRefGoogle ScholarPubMed
24Larson, R.A. et al. (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. Cancer 104, 1442-1452CrossRefGoogle Scholar
25Kell, W.J. et al. (2003) A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 102, 4277-4283CrossRefGoogle ScholarPubMed
26 Tsimberidou, A.M. et al. Mylotarg, fludarabine, cytarabine (ara-C), and cyclosporine (MFAC) regimen as post-remission therapy in acute myelogenous leukemia. Cancer Chemotherapy and Pharmacology 52, 449-452CrossRefGoogle Scholar
27Amadori, S. et al. (2004) Sequential administration of gemtuzumab ozogamicin and conventional chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Haematologica 89, 950-956Google ScholarPubMed
28Nabhan, C. et al. (2005) Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leukemia Research 29, 53-57CrossRefGoogle ScholarPubMed
29Chevallier, P. et al. (2005) Administration of Mylotarg 4 days after beginning of a chemotherapy including intermediate-dose aracytin and mitoxantrone (MIDAM regimen) produces a high rate of complete hematologic remission in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leukemia Research 29, 1003-1007CrossRefGoogle ScholarPubMed
30Chevallier, P. et al. (2008) Long-term disease-free survival after gemtuzumab, intermediate-dose cytarabine, and mitoxantrone in patients with CD33(+) primary resistant or relapsed acute myeloid leukemia. Journal of Clinical Oncology 26, 5192-5197CrossRefGoogle ScholarPubMed
31Aribi, A. et al. (2007) Combination therapy with arsenic trioxide, all-trans-retinoic acid, and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer 109, 1355-1359CrossRefGoogle ScholarPubMed
32Linenberger, M.L. et al. (2001) Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98, 988-994CrossRefGoogle ScholarPubMed
33van Der Velden, V.H. et al. (2004) High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients. Leukemia 18, 983-988CrossRefGoogle ScholarPubMed
34Chevallier, P. et al. (2008) Persistence of CD33 expression at relapse in CD33(+) acute myeloid leukaemia patients after receiving Gemtuzumab in the course of the disease. British Journal of Haematology 143, 744-746CrossRefGoogle ScholarPubMed
35Feldman, E.J. et al. (2005) Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. Journal of Clinical Oncology 23, 4110-4116CrossRefGoogle ScholarPubMed
36Schwartz, M.A. et al. (1993) Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. Journal of Clinical Oncology 11, 294-303CrossRefGoogle ScholarPubMed
37Sgouros, G. et al. (1999) Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. Journal of Nuclear Medicine 40, 1935-1946Google ScholarPubMed
38Mustelin, T., Vang, T. and Bottini, N. (2005) Protein tyrosine phosphatases and the immune response. Nature Reviews Immunology 5, 43-57CrossRefGoogle ScholarPubMed
39Matthews, D.C. et al. (1999) Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 94, 1237-1247CrossRefGoogle ScholarPubMed
40Pagel, J.M. et al. (2006) 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 107, 2184-2191CrossRefGoogle ScholarPubMed
41Stocks, S.C., Ruchaud-Sparagano, M.H., Kerr, M.A., Grunert, F., Haslett, C. and Dransfield, I. (1996) CD66: role in the regulation of neutrophil effector function. European Journal of Immunology 26, 2924-2932CrossRefGoogle ScholarPubMed
42Bunjes, D. et al. (2001) Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood 98, 565-572CrossRefGoogle ScholarPubMed
43Ringhoffer, M. et al. (2005) 188Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. British Journal of Haematology 130, 604-613CrossRefGoogle ScholarPubMed
44Zenz, T. et al. (2006) Targeted marrow irradiation with radioactively labeled anti-CD66 monoclonal antibody prior to allogeneic stem cell transplantation for patients with leukemia: results of a phase I-II study. Haematologica 91, 285-286Google ScholarPubMed
45Buchmann, I. et al. (2003) A comparison of the biodistribution and biokinetics of (99 m)Tc-anti-CD66 mAb BW 250/183 and (99 m)Tc-anti-CD45 mAb YTH 24.5 with regard to suitability for myeloablative radioimmunotherapy. European Journal of Nuclear Medicine and Molecular Imaging 30, 667-673CrossRefGoogle Scholar
46Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., and Dick, J.E. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine 12, 1167-1174CrossRefGoogle ScholarPubMed
47Graf, M., Hecht, K., Reif, S., Pelka-Fleischer, R., Pfister, K. and Schmetzer, H. (2004) Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies. European Journal of Haematology 72, 89-106CrossRefGoogle ScholarPubMed
48Misaghian, N. et al. (2009) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 23, 25-42CrossRefGoogle ScholarPubMed
49Du, X., Ho, M. and Pastan, I. (2007) New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukemia cells. Journal of Immunotherapy 30, 607-613CrossRefGoogle ScholarPubMed
50Nadler, L.M., Ritz, J., Hardy, R., Pesando, J.M., Schlossman, S.F. and Stashenko, P. (1981) A unique cell surface antigen identifying lymphoid malignancies of B cell origin. The Journal of Clinical Investigation 67, 134-140CrossRefGoogle ScholarPubMed
51Riley, J.K. and Sliwkowski, M.X. (2000) CD20: a gene in search of a function. Seminars in Oncology 27 (Suppl. 12), 17-24Google ScholarPubMed
52Press, O.W., Howell-Clark, J., Anderson, S. and Bernstein, I. (1994) Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood 83, 1390-1397CrossRefGoogle ScholarPubMed
53Reff, M.E. et al. (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435-445CrossRefGoogle ScholarPubMed
54Smith, M.R. (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359-7368CrossRefGoogle ScholarPubMed
55Stolz, C. et al. (2008) Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to rituximab-induced apoptosis. Blood 112, 3312-3321CrossRefGoogle ScholarPubMed
56Clynes, R.A., Towers, T.L., Presta, L.G. and Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets Nature Mediane 6, 443-446CrossRefGoogle Scholar
57Cartron, G. et al. (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcgamma RIIIa gene. Blood 99, 754-758CrossRefGoogle Scholar
58Farag, S.S., Flinn, I.W., Modali, R., Lehman, T.A., Young, D. and Byrd, J.C. (2004) Fc gamma RIIIα and Fc gamma RIIα polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood 103, 1472-1474CrossRefGoogle Scholar
59Byrd, J.C., et al. (2002) The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 99, 1038-1043CrossRefGoogle ScholarPubMed
60Maloney, D.G. et al. (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84, 2457-2466CrossRefGoogle ScholarPubMed
61Maloney, D.G. et al. (1997) IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. Journal of Clinical Oncology 15, 3266-3274CrossRefGoogle ScholarPubMed
62Berinstein, N.L. et al. (1998) Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Annals of Oncology 9, 995-1001CrossRefGoogle ScholarPubMed
63McLaughlin, P. et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. Journal of Clinical Oncology 16, 2825-2833CrossRefGoogle ScholarPubMed
64Piro, L.D. et al. (1998) Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma. Annals of Oncology 10, 655-661CrossRefGoogle Scholar
65Nguyen, D.T., Amess, J.A., Doughty, H., Hendry, L. and Diamond, L.W. (1999) IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin's lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. European Journal Haematology 62, 76-82CrossRefGoogle ScholarPubMed
66Ladetto, M., Bergui, L., Ricca, I., Campana, S., Pileri, A. and Tarella, C. (2000) Rituximab anti-CD20 monoclonal antibody induces marked but transient reductions of peripheral blood lymphocytes in chronic lymphocytic leukaemia patients. Medical Oncology 17, 203-210CrossRefGoogle ScholarPubMed
67Hainsworth, J.D. et al. (2003) Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. Journal of Clinical Oncology 21, 1746-1751CrossRefGoogle ScholarPubMed
68Foran, J.M. et al. (2000) European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. Journal of Clinical Oncology 18, 317-324CrossRefGoogle ScholarPubMed
69O'Brien, S.M. et al. (2001) Rituximab dose-escalation trial in chronic lymphocytic leukemia. Journal of Clinical Oncology 19, 2165-2170CrossRefGoogle ScholarPubMed
70Perz, J., Topaly, J., Fruehauf, S., Hensel, M. and Ho, A.D. (2002) Level of CD 20-expression and efficacy of rituximab treatment in patients with resistant or relapsing B-cell prolymphocytic leukemia and B-cell chronic lymphocytic leukemia. Leukmia and Lymphoma 43, 149-151CrossRefGoogle ScholarPubMed
71Byrd, J.C. et al. (2003) Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALGB 9712). Blood 101, 6-14CrossRefGoogle Scholar
72Byrd, J.C. et al. (2005) Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood 105, 49-53CrossRefGoogle ScholarPubMed
73Lamanna, N. et al. (2009) Sequential therapy with fludarabine, high-dose cyclophosphamide, and rituximab in previously untreated patients with chronic lymphocytic leukemia produces high-quality responses: molecular remissions predict for durable complete responses. Journal of Clinical Oncology 27, 491-497CrossRefGoogle ScholarPubMed
74Foon, K.A. et al. (2009) Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. Journal of Clinical Oncology 27, 498-503CrossRefGoogle ScholarPubMed
75Lauria, F. et al. (2001) Efficacy of anti-CD20 monoclonal antibodies (Mabthera) in patients with progressed hairy cell leukemia. Haematologica 86, 1046-1050Google ScholarPubMed
76Nieva, J., Bethel, K. and Saven, A. (2003) Phase 2 study of rituximab in the treatment of cladribine-failed patients with hairy cell leukemia. Blood 102, 810-813CrossRefGoogle ScholarPubMed
77Winkler, U., Jensen, M., Manzke, O., Schulz, H., Diehl, V. and Engert, A. (1999) Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 94, 2217-2224CrossRefGoogle ScholarPubMed
78Robak, T. (2008) Ofatumumab, a human monoclonal antibody for lymphoid malignancies and autoimmune disorders. Current Opinion in Molecular Therapeutics 10, 294-309Google ScholarPubMed
79Teeling, J.L. et al. (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 104, 1793-1800CrossRefGoogle ScholarPubMed
80Hagenbeek, A. et al. (2008) First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 111, 5486-5495CrossRefGoogle ScholarPubMed
81Coiffier, B. et al. (2008) Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study. Blood 111, 1094-1100CrossRefGoogle ScholarPubMed
82Osterborg, A. et al. (2008) Ofatumumab (HuMax-CD20), a novel CD20 monoclonal antibody, is an active treatment for patients with CLL refractory to both fludarabine and alemtuzumab or bulky fludarabine-refractory disease: Results from the planned interim analysis of an international pivotal trial. Blood 112, 328 [Abstract]CrossRefGoogle Scholar
83Liu, A.Y., Robinson, R.R., Murray, E.D. Jr., Ledbetter, J.A., Hellström, I. and Hellström, K.E. (1987) Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. Journal of Immunology 139, 3521-3526CrossRefGoogle ScholarPubMed
84Morschhauser, F. et al. (2007) Interim results of a phase I/II study of ocrelizumab, a new humanised anti-CD20 antibody in patients with relapsed/refractory follicular non-Hodgkin's lymphoma. Blood 110, 645 [Abstract]CrossRefGoogle Scholar
85Stein, R. et al. (2004) Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and Its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma. Clinical Cancer Research 10, 2868-2878CrossRefGoogle ScholarPubMed
86Morschhauser, F. et al. (2007) Low doses of humanized anti-CD20 antibody, IMMU-106 (hA20), in refractory or recurrent NHL: Phase I/II results. J Clin Oncol, ASCO Annual Meeting Proceedings 25, 8032 [Abstract]CrossRefGoogle Scholar
87Dorshkind, K. and Montecino-Rodriguez, E. (2007) Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology 7, 213-219CrossRefGoogle ScholarPubMed
88Ball, E.D. et al. (1991) Prognostic value of lymphocyte surface markers in acute myeloid leukemia. Blood 77, 2242-2250CrossRefGoogle ScholarPubMed
89Bradstock, K., Matthews, J., Benson, E., Page, F. and Bishop, J. (1994) Prognostic value of immunophenotyping in acute myeloid leukemia. Australian Leukaemia Study Group. Blood 84, 1220-1225Google ScholarPubMed
90Carter, R.H. and Fearon, D.T. (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105-107CrossRefGoogle ScholarPubMed
91Bobbitt, K.B. and Justement, L.B. (2000) Regulation of MHC class II signal transduction by the B cell coreceptors CD19 and CD22. Journal of Immunology 165, 5588-5596CrossRefGoogle Scholar
92Horton, H.M. et al. (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Research 68, 8049-8057CrossRefGoogle ScholarPubMed
93Zalevsky, J. et al. (2009) The impact of Fc engineering on an anti-CD19 antibody: increased Fc-gamma receptor affinity enhances B-cell clearing in nonhuman primates. Blood 113, 3735-3743CrossRefGoogle Scholar
94Khouri, I.F. et al. (1994) Autologous and allogeneic bone marrow transplantation for chronic lymphocytic leukemia: preliminary results. Journal of Clinical Oncology 12, 748-758CrossRefGoogle ScholarPubMed
95Paulus, U., Schmitz, N., Viehmann, K., von Neuhoff, N. and Dreger, P. (1997) Combined positive/negative selection for highly effective purging of PBPC grafts: towards clinical application in patients with B-CLL. Bone Marrow Transplant 20, 415-420CrossRefGoogle ScholarPubMed
96Dreger, P. et al. (2000) A prospective study of positive/negative ex vivo B-cell depletion in patients with chronic lymphocytic leukemia. Experimental Hematology 28, 1187-1196CrossRefGoogle ScholarPubMed
97Szatrowski, T.P. et al. (2003) Lineage specific treatment of adult patients with acute lymphoblastic leukemia in first remission with anti-B4-blocked ricin or high-dose cytarabine: Cancer and Leukemia Group B Study 9311. Cancer 97, 1471-1480CrossRefGoogle ScholarPubMed
98Walker, J.A. and Smith, K.G. (2008) CD22: An inhibitory enigma. Immunology 123, 314-325CrossRefGoogle ScholarPubMed
99Leung, S.O. et al. (1994) Chimerization of LL2, a rapidly internalizing antibody specific for B cell lymphoma. Hybridoma 13, 469-476CrossRefGoogle ScholarPubMed
100Carnahan, J. et al. (2007) Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Molecular Immunology 44, 1331-1341CrossRefGoogle ScholarPubMed
101Leonard, J.P. et al. (2004) Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin Cancer Res 10, 5327-5334CrossRefGoogle ScholarPubMed
102Micallef, I.N. et al. (2006) A pilot study of epratuzumab and rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated, diffuse large B-cell lymphoma. Cancer 107, 2826-2832CrossRefGoogle ScholarPubMed
103Raetz, E.A. et al. (2008) Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children's Oncology Group Pilot Study. Journal of Clinical Oncology 26, 3756-3762CrossRefGoogle ScholarPubMed
104Kreitman, R.J. et al. (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. Journal of Clinical Oncology 23, 6719-6729CrossRefGoogle ScholarPubMed
105Kreitman, R.J. et al. (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. New England Journal of Medicine 345, 241-247CrossRefGoogle ScholarPubMed
106Bang, S., Nagata, S., Onda, M., Kreitman, R.J. and Pastan, I. (2005) HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity. Clinical Cancer Research 11, 1545-1550CrossRefGoogle ScholarPubMed
107DiJoseph, J.F. et al. (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103, 1807-1814CrossRefGoogle ScholarPubMed
108DiJoseph, J.F., Dougher, M.M., Armellino, D.C., Evans, D.Y. and Damle, N.K. (2007) Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21, 2240-2245CrossRefGoogle ScholarPubMed
109Delespesse, G. et al. (1991) Expression, structure, and function of the CD23 antigen. Advances in Immunology 49, 149-191CrossRefGoogle ScholarPubMed
110Bonnefoy, J.Y. et al. (1997) Structure and functions of CD23. International Reviews of Immunology 16, 113-128CrossRefGoogle ScholarPubMed
111Reichert, J.M. (2004) Technology evaluation: lumiliximab, Biogen Idec. Current Opinion in Molecular Therapeutics 6, 675-683Google ScholarPubMed
112Pathan, N.I., Chu, P., Hariharan, K., Cheney, C., Molina, A. and Byrd, J. (2008) Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood 111, 1594-1602CrossRefGoogle ScholarPubMed
113Byrd, J.C. et al. (2007) Phase 1 study of lumiliximab with detailed pharmacokinetic and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clinical Cancer Research 13, 4448-4455CrossRefGoogle ScholarPubMed
114Treumann, A., Lifely, M.R., Schneider, P. and Ferguson, M.A. (1995) Primary structure of CD52. Journal of Biological Chemistry 270, 6088-6099Google ScholarPubMed
115Hale, G. et al. (1983) Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 62, 873-882CrossRefGoogle ScholarPubMed
116Nückel, H., Frey, U.H., Röth, A., Dührsen, U. and Siffert, W. (2005) Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. European Journal of Pharmacology 514, 217-224CrossRefGoogle ScholarPubMed
117Hale, G. et al. (1988) Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 2, 1394-1399CrossRefGoogle ScholarPubMed
118Osterborg, A. et al. (1997) Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology 15, 1567-1574CrossRefGoogle Scholar
119Keating, M.J. et al. (2002) Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 99, 3554-3561CrossRefGoogle ScholarPubMed
120Rai, K.R. et al. (2002) Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. Journal of Clinical Oncology 20, 3891-3897CrossRefGoogle ScholarPubMed
121Ferrajoli, A. et al. (2003) Phase II study of alemtuzumab in chronic lymphoproliferative disorders. Cancer 98, 773-778CrossRefGoogle ScholarPubMed
122Cortelezzi, A. et al. (2005) A pilot study of low-dose subcutaneous alemtuzumab therapy for patients with hemotherapy-refractory chronic lymphocytic leukemia. Haematologica 90, 410-412Google ScholarPubMed
123Lundin, J. et al. (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100, 768-773CrossRefGoogle ScholarPubMed
124Hillmen, P. et al. (2007) Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. Journal of Clinical Oncology 25, 5616-5623CrossRefGoogle ScholarPubMed
125Elter, T. et al. (2005) Fludarabine in combination with alemtuzumab is effective and feasible in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: results of a phase II trial. Journal of Clinical Oncology 23, 7024-7031CrossRefGoogle ScholarPubMed
126Kennedy, B. et al. (2002) Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia. Blood 99, 2245-2247CrossRefGoogle ScholarPubMed
127Wierda, W.G. et al. (2008) CFAR, an active frontline regimen for high-risk patients with CLL including those with del 17p. Blood 112, 2095 [Abstract]CrossRefGoogle Scholar
128O'Brien, S.M. et al. (2003) Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer 98, 2657-2663CrossRefGoogle ScholarPubMed
129Moreton, P. et al. (2005) Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. Journal of Clinical Oncology 23, 2971-2979CrossRefGoogle ScholarPubMed
130Lozanski, G. et al. (2004) Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 103, 3278-3281CrossRefGoogle ScholarPubMed
131Morris, J.C., Waldmann, T.A. and Janik, J.E. (2008) Receptor-directed therapy of T-cell leukemias and lymphomas. Journal of Immunotoxicology 5, 235-248CrossRefGoogle ScholarPubMed
132Pawson, R. et al. (1997) Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. Journal of Clinical Oncology 15, 2667-2672CrossRefGoogle ScholarPubMed
133Dearden, C.E. et al. (2001) High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood 98, 1721-1726CrossRefGoogle ScholarPubMed
134Keating, M.J. et al. (2002) Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. Journal of Clinical Oncology 20, 205-213CrossRefGoogle ScholarPubMed
135Lundin, J. et al. (2003) Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 101, 4267-4272CrossRefGoogle ScholarPubMed
136Kennedy, G.A. et al. (2003) Treatment of patients with advanced mycosis fungoides and Sézary syndrome with alemtuzumab. European Journal of Haematology 71, 250-256CrossRefGoogle ScholarPubMed
137Alinari, L., Geskin, L., Grady, T., Baiocchi, R.A., Bechtel, M.A. and Porcu, P. (2008) Subcutaneous alemtuzumab for Sézary syndrome in the very elderly Leukemia Research 32, 1299-1303CrossRefGoogle Scholar
138Zhang, Z., Zhang, M., Goldman, C.K., Ravetch, J.V. and Waldmann, T.A. (2003) Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Research 63, 6453-6457Google ScholarPubMed
139Mone, A. et al. (2005) Durable hematologic complete response and suppression of HTLV-1 viral load following alemtuzumab in zidovudine/IFNalpha-refractory adult T-cell leukemia. Blood 106, 3380-3382CrossRefGoogle ScholarPubMed
140Ravandi, F. and Faderl, S. (2006) Complete response in a patient with adult T-cell leukemia (ATL) treated with combination of alemtuzumab and pentostatin. Leukemia Research 30, 103-105CrossRefGoogle Scholar
141Sharma, S. et al. (2008) Alemtuzumab (Campath-1H) in patients with HTLV-1-associated adult T-cell leukemia/lymphoma. Blood 112, 2010 [Abstract]CrossRefGoogle Scholar
142Janik, J.E. et al. (2005) A pilot trial of Campath-1H and dose-adjusted EPOCH in CD52-expressing aggressive T-cell malignancies. Blood 106, 3348 [Abstract]CrossRefGoogle Scholar
143Non-Hodgkin's Lymphoma Classification Project. (1997) A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood 89, 3909-3918CrossRefGoogle Scholar
144Armitage, J.O. and Weisenburger, D.D. (1998) New approach to classifying non-Hodgkin's lymphomas: Clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. Journal of Clinical Oncology 16, 2780-2795CrossRefGoogle ScholarPubMed
145Groves, F.D., Linet, M.S., Travis, L.B. and Devesa, S.S. (2000) Cancer surveillance series: non-Hodgkin's lymphoma incidence by histologic subtype in the United States from 1978 through 1995. Journal of the National Cancer Institute 92, 1240-1251CrossRefGoogle ScholarPubMed
146Gisselbrecht, C. et al. (1998) Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Groupe d'Etudes des Lymphomes de l'Adulte (GELA). Blood 92, 76-82Google ScholarPubMed
147Moingeon, P. et al. (1989) The structural biology of CD2. Immunological Reviews 111, 111-144CrossRefGoogle ScholarPubMed
148Moingeon, P.E. et al. (1991) Complementary roles for CD2 and LFA-1 adhesion pathways during T-cell activation. European Journal of Immunology 21, 605-610CrossRefGoogle ScholarPubMed
149van der Merwe, P.A. and Davis, S.J. (2003) Molecular interactions mediating T cell antigen recognition. Annual Review of Immunology 21, 659-684CrossRefGoogle ScholarPubMed
150Xu, Y. et al. (2004) The anti-CD2 monoclonal antibody BTI-322 generates unresponsiveness by activation-associated T cell depletion. Clinical and Experimental Immunology 138, 476-483CrossRefGoogle ScholarPubMed
151Shaffer, J. et al. (2007) Regulatory T-cell recovery in recipients of haploidentical nonmyeloablative hematopoietic cell transplantation with a humanized anti-CD2 mAb, MEDI-507, with or without fludarabine. Experimental Hematology 35, 1140-1152CrossRefGoogle ScholarPubMed
152Zhang, Z., Zhang, M., Ravetch, J.V., Goldman, C. and Waldmann, T.A. (2003) Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood 102, 284-288CrossRefGoogle ScholarPubMed
153O'Mahony, D. et al. (2007) A Phase I trial of siplizumab in CD2-positive lymphoproliferative disease. AIDS Research and Human Retroviruses 23, 598 [Abstract]Google Scholar
154O'Mahony, D. et al. (2009) EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clinical Cancer Research 15, 2514-2522CrossRefGoogle ScholarPubMed
155Garcia, K.C. and Adams, E.J. (2005) How the T-cell receptor sees antigen- A structural view. Cell 122, 333-336CrossRefGoogle ScholarPubMed
156Kirk, A.D. (2006) Induction immunosuppression. Transplantation 82, 593-602CrossRefGoogle ScholarPubMed
157Knop, S. et al. (2007) Treatment of steroid-resistant acute GVHD with OKT3 and high-dose steroids results in better disease control and lower incidence of infectious complications when compared to high-dose steroids alone: A randomized multi-center trial by the EBMT Chronic Leukemia Working Party. Leukemia 21, 1830-1833CrossRefGoogle Scholar
158Chatenoud, L. (2003) CD3-specific antibody-induced active tolerance: From bench to bedside. Nature Reviews Immunology 3, 123-132CrossRefGoogle ScholarPubMed
159Gramatzki, M. et al. (1995) Therapy with OKT3 monoclonal antibody in refractory T-cell acute lymphoblastic leukemia induces interleukin-2 responsiveness. Leukemia 9, 382-390Google ScholarPubMed
160Leahy, D.J. (1995) A structural view of CD4 and CD8. FASEB Journal 9, 17-25CrossRefGoogle ScholarPubMed
161Knox, S.J. et al. (1991) Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood 77, 20-30CrossRefGoogle ScholarPubMed
162Knox, S. et al. (1996) Treatment of cutaneous T-cell lymphoma with chimeric anti-CD4 monoclonal antibody. Blood 87, 893-899CrossRefGoogle ScholarPubMed
163Kim, Y.H. et al. (2007) Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood 109, 4655-4662CrossRefGoogle ScholarPubMed
164Rider, D.A. et al. (2007) A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Research 67, 9945-9953CrossRefGoogle ScholarPubMed
165Lozano, F. et al. (2000) CD5 signal transduction: Positive or negative modulation of antigen receptor signaling. Critical Reviews in Immunology 20, 347-358Google ScholarPubMed
166Miller, R.A., Oseroff, A.R., Stratte, P.T. and Levy, R. (1983) Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. Blood 62, 988-995CrossRefGoogle ScholarPubMed
167Dillman, R.O., Shawler, D.L., Dillman, J.B. and Royston, I. (1984) Therapy of chronic lymphocytic leukemia and cutaneous T-cell lymphoma with T101 monoclonal antibody. Journal of Clinical Oncology 2, 881-891CrossRefGoogle ScholarPubMed
168Foss, F.M. et al. (1998) Phase I study of the pharmacokinetics of a radioimmunoconjugate, 90Y-T101, in patients with CD5-expressing leukemia and lymphoma. Clinical Cancer Research 4, 2691-2700Google ScholarPubMed
169Robb, R.J., Munck, A. and Smith, K.A. (1982) T-cell growth factor receptors. Journal of Experimental Medicine 154, 1455-1474CrossRefGoogle Scholar
170Morris, J.C. and Waldmann, T.A. (2000) Advances in interleukin 2 receptor targeted treatment. Annals of the Rheumatic Diseases 59 (Suppl. 1), 109-114CrossRefGoogle ScholarPubMed
171Waldmann, T.A. (1986) The structure, function, and expression of interleukin-2 receptors on normal and malignant T-cells. Science 232, 727-732CrossRefGoogle Scholar
172Uchiyama, T., Broder, S. and Waldmann, T.A. (1981) A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T-cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. Journal of Immunology 126, 1393-1397CrossRefGoogle ScholarPubMed
173Uchiyama, T., Nelson, D.L., Fleisher, T.A. and Waldmann, T.A. (1981) A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T-cells. II. Expression of Tac antigen on activated cytotoxic killer T-cells, suppressor cells, and on one of two types of helper T-cells. Journal of Immunology 126, 1398-1403CrossRefGoogle ScholarPubMed
174Queen, C. et al. (1989) A humanized antibody that binds to the interleukin 2 receptor. Proceedings of the National Academy of Sciences of the United States of America 86, 10029-10033CrossRefGoogle Scholar
175Zhang, M. et al. (2004) Activating Fc receptors are required for anti-tumor efficacy of the antibodies directed toward CD25 in a murine model of adult T-cell leukemia. Cancer Research 64, 5825-5829CrossRefGoogle Scholar
176Nashan, B., Light, S., Hardie, I.R., Lin, A. and Johnson, J.R. (1999) Reduction of acute renal allograft rejection by daclizumab. Daclizumab Double Therapy Study Group. Transplantation 67, 110-115CrossRefGoogle ScholarPubMed
177Poiesz, B.J., Ruscetti, F.W., Gazdar, A.F., Bunn, P.A., Minna, J.D. and Gallo, R.C. (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America 77, 7415-7419CrossRefGoogle ScholarPubMed
178Matutes, E. (2007) Adult T-cell leukaemia/lymphoma. Journal of Clinical Pathology 60, 1373-1377CrossRefGoogle ScholarPubMed
179Tendler, C.L. et al. (1990) Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: Pathogenic implications and a rationale for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America 87, 5218-5222CrossRefGoogle Scholar
180Waldmann, T.A. et al. (1993) The interleukin-2 receptor: A target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood 82, 1701-1712CrossRefGoogle ScholarPubMed
181Waldmann, T.A. et al. (1995) Radioimmunotherapy of interleukin-2Ra-expressing adult T-cell leukemia with yttrium-90-labeled anti-Tac. Blood 86, 4063-4075CrossRefGoogle ScholarPubMed
182Morris, J.C. et al. (2003) A Phase I trial of humanized anti-Tac (daclizumab) for the treatment of human T-cell lymphotrophic virus type-1-associated leukemia/lymphoma. Journal of Clinical Oncology, American Society of Clinical Oncology Annual Meeting Proceedings 22, 695 [Abstract]Google Scholar
183Kreitman, R.J., Bailon, P., Chaudhary, V.K., FitzGerald, D.J. and Pastan, I. (1994) Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood 83, 426-434CrossRefGoogle ScholarPubMed
184Kreitman, R.J. et al. (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology 18, 1622-1636CrossRefGoogle Scholar
185Tsudo, M., Kozak, R.W., Goldman, C.K. and Waldmann, T.A. (1986) Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proceedings of the National Academy of Sciences of the United States of America 83, 9694-9698CrossRefGoogle Scholar
186Tsudo, M., Kitamura, F. and Miyasaka, M. (1989) Characterization of the interleukin 2 receptor beta chain using three distinct monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America 86, 1982-1986CrossRefGoogle ScholarPubMed
187Shanmugham, L.N. et al. (2006) IL-15 an immunoregulatory and anti-cancer cytokine. Recent advances. Journal of Experimental and Clinical Cancer Research 25, 529-536Google ScholarPubMed
188Waldmann, T.A. (2006) The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nature Reviews Immunology 6, 595-601CrossRefGoogle ScholarPubMed
189Kanegane, H. and Tosato, G. (1996) Activation of naive and memory T-cells by interleukin-15. Blood 88, 230-235CrossRefGoogle ScholarPubMed
190Guex-Crosier, Y. et al. (1997) Humanized antibodies against the alpha-chain of the IL-2 receptor and against the β-chain shared by the IL-2 and IL-15 receptors in a monkey uveitis model of autoimmune diseases. Journal of Immunology 158, 452-458CrossRefGoogle Scholar
191Alileche, A., Goldman, C.K. and Waldmann, T.A. (2001) Differential effects of IL-2 and IL-15 on expression of IL-2 receptor-α. Biochemical and Biophysical Research Communications 285, 1302-1308CrossRefGoogle ScholarPubMed
192Giri, J.G., Anderson, D.M., Kumaki, S., Park, L.S., Grabstein, K.H. and Cosman, D. (1995) IL-15, a novel T-cell growth factor that shares activities and receptor components with IL-2. Journal of Leukocyte Biology 57, 763-766CrossRefGoogle ScholarPubMed
193Morris, J.C. et al. (2006) Preclinical and phase I clinical trial of blockade of IL-15 using Mik-β-1 monoclonal antibody in T-cell large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences of the United States of America 103, 401-406CrossRefGoogle Scholar

Further reading, resources and contacts

Up-to-date treatment news on leukemia and lymphoma diagnosis and treatment is available at:

Waldmann, T.A. and Morris, J.C. (2006) Development of antibodies and chimeric molecules for cancer immunotherapy, In Allison, J.P. and Dranoff, G. (eds.) Advances in Immunology: Cancer Immunotherapy 90, 83-131. Elsevier Academic Press.CrossRefGoogle ScholarPubMed
Morris, J.C., Waldmann, T.A. and Janik, J.E. (2008) Receptor-directed therapy of T-cell leukemias and lymphomas. Journal of Immunotoxicology 5, 235-248.CrossRefGoogle ScholarPubMed
Kreitman, R.J. (2009) Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 23, 1-13.CrossRefGoogle ScholarPubMed
Migkou, M., Dimopoulos, M.A., Gavriatopoulou, M. and Terpos, E. (2009) Applications of monoclonal antibodies for the treatment of hematological malignancies. Expert Opinion on Biological Therapy 9, 207-220.CrossRefGoogle ScholarPubMed
Waldmann, T.A. and Morris, J.C. (2006) Development of antibodies and chimeric molecules for cancer immunotherapy, In Allison, J.P. and Dranoff, G. (eds.) Advances in Immunology: Cancer Immunotherapy 90, 83-131. Elsevier Academic Press.CrossRefGoogle ScholarPubMed
Morris, J.C., Waldmann, T.A. and Janik, J.E. (2008) Receptor-directed therapy of T-cell leukemias and lymphomas. Journal of Immunotoxicology 5, 235-248.CrossRefGoogle ScholarPubMed
Kreitman, R.J. (2009) Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 23, 1-13.CrossRefGoogle ScholarPubMed
Migkou, M., Dimopoulos, M.A., Gavriatopoulou, M. and Terpos, E. (2009) Applications of monoclonal antibodies for the treatment of hematological malignancies. Expert Opinion on Biological Therapy 9, 207-220.CrossRefGoogle ScholarPubMed