Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T03:40:39.140Z Has data issue: false hasContentIssue false

Role of chemokines in proteinuric kidney disorders

Published online by Cambridge University Press:  17 February 2014

Juan Antonio Moreno*
Affiliation:
Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
Sara Moreno
Affiliation:
Department of Biotechnology, INIA, Madrid, Spain
Alfonso Rubio-Navarro
Affiliation:
Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
Carmen Gómez-Guerrero
Affiliation:
Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
Alberto Ortiz
Affiliation:
Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain Fundacion Renal Iñigo Alvarez de Toledo/Instituto Reina Sofia de Investigacion Nefrologica (FRIAT/IRSIN), Spain
Jesús Egido
Affiliation:
Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain Fundacion Renal Iñigo Alvarez de Toledo/Instituto Reina Sofia de Investigacion Nefrologica (FRIAT/IRSIN), Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
*
*Corresponding author: Juan Antonio Moreno, IIS-Fundación Jiménez Díaz, Avda. Reyes Católicos 2, 28040 Madrid, Spain. E-mail: [email protected]

Abstract

Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements 3, 1-150Google Scholar
2Carroll, M.F. and Temte, J.L. (2000) Proteinuria in adults: a diagnostic approach. American Family Physician 62, 1333-1340Google ScholarPubMed
3Reiser, J. et al. (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. Journal of Clinical Investigation 113, 1390-1397CrossRefGoogle ScholarPubMed
4D'Amico, G. and Bazzi, C. (2003) Pathophysiology of proteinuria. Kidney International 63, 809-825CrossRefGoogle ScholarPubMed
5Iseki, K. et al. (2003) Proteinuria and the risk of developing end-stage renal disease. Kidney International 63, 1468-1474CrossRefGoogle ScholarPubMed
6Breyer, J.A. et al. (1996) Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The Collaborative Study Group. Kidney International 50, 1651-1658CrossRefGoogle ScholarPubMed
7Peterson, J.C. et al. (1995) Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Annals of Internal Medicine 123, 754-762CrossRefGoogle ScholarPubMed
8Irie, F. et al. (2006) The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population. Kidney International 69, 1264-1271CrossRefGoogle ScholarPubMed
9Jafar, T.H. et al. (2001) Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Annals of Internal Medicine 135, 73-87CrossRefGoogle ScholarPubMed
10Jafar, T.H. et al. (2001) Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney International 60, 1131-1140CrossRefGoogle ScholarPubMed
11Menon, M.C., Chuang, P.Y. and He, C.J. (2012) The glomerular filtration barrier: components and crosstalk. International Journal of Nephrology 2012, 749010CrossRefGoogle ScholarPubMed
12Ruggenenti, P., Perna, A. and Remuzzi, G. (2003) Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney International 63, 2254-2261CrossRefGoogle ScholarPubMed
13Abbate, M. et al. (2002) Proximal tubular cells promote fibrogenesis by TGF-beta1-mediated induction of peritubular myofibroblasts. Kidney International 61, 2066-2077CrossRefGoogle ScholarPubMed
14Ohse, T. et al. (2006) Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney International 70, 1447-1455CrossRefGoogle ScholarPubMed
15Tang, S. et al. (1999) Apical proteins stimulate complement synthesis by cultured human proximal tubular epithelial cells. Journal of American Society of Nephrology 10, 69-76CrossRefGoogle ScholarPubMed
16Zoja, C. et al. (1995) Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. American Journal of Kidney Diseases 26, 934-941CrossRefGoogle ScholarPubMed
17Anders, H.J. et al. (2003) CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. Journal of Immunology 170, 5658-5666CrossRefGoogle ScholarPubMed
18Chung, A.C. and Lan, H.Y. (2011) Chemokines in renal injury. Journal of American Society of Nephrology 22, 802-809CrossRefGoogle ScholarPubMed
19Zoja, C. et al. (1998) Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappa B activation. Kidney International 53, 1608-1615CrossRefGoogle ScholarPubMed
20Segerer, S., Nelson, P.J. and Schlondorff, D. (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. Journal of American Society of Nephrology 11, 152-176CrossRefGoogle ScholarPubMed
21Weber, K.S. et al. (1999) Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. European Journal of Immunology 29, 700-7123.0.CO;2-1>CrossRefGoogle ScholarPubMed
22Langer, H.F. and Chavakis, T. (2009) Leukocyte-endothelial interactions in inflammation. Journal of Cellular and Molecular Medicine 13, 1211-1220CrossRefGoogle ScholarPubMed
23Imhof, B.A. and Aurrand-Lions, M. (2004) Adhesion mechanisms regulating the migration of monocytes. Nature Reviews Immunology 4, 432-444CrossRefGoogle ScholarPubMed
24Kuroiwa, T. et al. (2000) Distinct T cell/renal tubular epithelial cell interactions define differential chemokine production: implications for tubulointerstitial injury in chronic glomerulonephritides. Journal of Immunology 164, 3323-3329CrossRefGoogle ScholarPubMed
25Sanz, A.B. et al. (2010) NF-kappaB in renal inflammation. Journal of American Society of Nephrology 21, 1254-1262CrossRefGoogle ScholarPubMed
26Mezzano, S. et al. (2004) NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrology Dialysis Transplantation 19, 2505-2512CrossRefGoogle ScholarPubMed
27Zlotnik, A. and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity. Immunity 12, 121-127CrossRefGoogle ScholarPubMed
28Ansel, K.M. et al. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309-314CrossRefGoogle ScholarPubMed
29Murphy, P.M. et al. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews 52, 145-176Google ScholarPubMed
30Moreno, J.A. et al. (2012) Targeting chemokines in proteinuria-induced renal disease. Expert Opinion on Therapeutic Targets 16, 833-845CrossRefGoogle ScholarPubMed
31Moore, B.B. et al. (1998) CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. Journal of Investigative Medicine 46, 113-120Google ScholarPubMed
32Quackenbush, E.J. et al. (1997) Eotaxin influences the development of embryonic hematopoietic progenitors in the mouse. Journal of Leukocyte Biology 62, 661-666CrossRefGoogle ScholarPubMed
33Strieter, R.M. et al. (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry 270, 27348-27357CrossRefGoogle ScholarPubMed
34Wong, M.M. and Fish, E.N. (2003) Chemokines: attractive mediators of the immune response. Seminars in Immunology 15, 5-14CrossRefGoogle ScholarPubMed
35Mantovani, A. (1999) The chemokine system: redundancy for robust outputs. Immunology Today 20, 254-257CrossRefGoogle ScholarPubMed
36Schlondorff, D. et al. (1997) Chemokines and renal disease. Kidney International 51, 610-621CrossRefGoogle ScholarPubMed
37Tipping, P.G. and Holdsworth, S.R. (2007) Cytokines in glomerulonephritis. Seminars in Nephrology 27, 275-285CrossRefGoogle ScholarPubMed
38Yamagishi, S. et al. (2007) Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Current Drug Targets 8, 952-959CrossRefGoogle ScholarPubMed
39Jimenez-Sainz, M.C. et al. (2003) Signaling pathways for monocyte chemoattractant protein 1-mediated extracellular signal-regulated kinase activation. Molecular Pharmacology 64, 773-782CrossRefGoogle ScholarPubMed
40Takaya, K. et al. (2003) Involvement of ERK pathway in albumin-induced MCP-1 expression in mouse proximal tubular cells. American Journal of Physiology - Renal Physiology 284, F1037-F1045CrossRefGoogle ScholarPubMed
41Eddy, A.A. and Giachelli, C.M. (1995) Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney International 47, 1546-1557CrossRefGoogle ScholarPubMed
42Donadelli, R. et al. (2000) Protein traffic activates NF-kB gene signaling and promotes MCP-1-dependent interstitial inflammation. American Journal of Kidney Diseases 36, 1226-1241CrossRefGoogle ScholarPubMed
43Ou, Z.L., Natori, Y. and Natori, Y. (2000) Transient and sequential expression of chemokine mRNA in glomeruli in puromycin aminonucleoside nephrosis. Nephron 85, 254-257CrossRefGoogle ScholarPubMed
44Chow, F.Y. et al. (2006) Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International 69, 73-80CrossRefGoogle ScholarPubMed
45Wu, H. et al. (2005) DNA vaccination with naked DNA encoding MCP-1 and RANTES protects against renal injury in adriamycin nephropathy. Kidney International 67, 2178-2186CrossRefGoogle ScholarPubMed
46Yoshimoto, K. et al. (2004) CD68 and MCP-1/CCR2 expression of initial biopsies reflect the outcomes of membranous nephropathy. Nephron Clinical Practice 98, c25-c34CrossRefGoogle ScholarPubMed
47Wasilewska, A. et al. (2011) Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scandinavian Journal of Urology and Nephrology 45, 52-59CrossRefGoogle ScholarPubMed
48Lepenies et al. (2011) Renal TLR4 mRNA expression correlates with inflammatory marker MCP-1 and profibrotic molecule TGF-beta(1) in patients with chronic kidney disease. Nephron Clinical Practice 119, c97-c104CrossRefGoogle Scholar
49El-Shehaby, A. et al. (2011) Correlations of urinary biomarkers, TNF-like weak inducer of apoptosis (TWEAK), osteoprotegerin (OPG), monocyte chemoattractant protein-1 (MCP-1), and IL-8 with lupus nephritis. Journal of Clinical Immunology 31, 848-856CrossRefGoogle ScholarPubMed
50Segerer, S. et al. (1999) Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney International 56, 52-64CrossRefGoogle Scholar
51Xie, C. et al. (2011) RANTES deficiency attenuates autoantibody-induced glomerulonephritis. Journal of Clinical Immunology 31, 128-135CrossRefGoogle ScholarPubMed
52Schadde, E. et al. (2000) Expression of chemokines and their receptors in nephrotoxic serum nephritis. Nephrology Dialysis Transplantation 15, 1046-1053CrossRefGoogle ScholarPubMed
53Wagrowska-Danilewicz, M., Danilewicz, M. and Stasikowska, O. (2005) CC chemokines and chemokine receptors in IgA nephropathy (IgAN) and in non-IgA mesangial proliferative glomerulonephritis (MesProGN). The immunohistochemical comparative study. Polish Journal of Pathology 56, 121-126Google ScholarPubMed
54Anders, H.J. et al. (2001) Chemokine and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis. Journal of American Society of Nephrology 12, 919-931CrossRefGoogle ScholarPubMed
55Elmarakby, A.A. and Sullivan, J.C. (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therpeutics 30, 49-59CrossRefGoogle ScholarPubMed
56Tian, S. et al. (2007) Urinary levels of RANTES and M-CSF are predictors of lupus nephritis flare. Inflammation Research 56, 304-310CrossRefGoogle ScholarPubMed
57Pease, J.E. (2006) Asthma, allergy and chemokines. Current Drug Targets 7, 3-12CrossRefGoogle ScholarPubMed
58Pereira, R.L. et al. (2012) Invariant natural killer T cell agonist modulates experimental focal and segmental glomerulosclerosis. PLoS One 7, e32454CrossRefGoogle ScholarPubMed
59Cook, D.N. et al. (2000) CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495-503CrossRefGoogle ScholarPubMed
60Welsh-Bacic, D. et al. (2011) Expression of the chemokine receptor CCR6 in human renal inflammation. Nephrology Dialysis Transplantation 26, 1211-1220CrossRefGoogle ScholarPubMed
61Turner, J.E. et al. (2010) CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis. Journal of American Society of Nephrology 21, 974-985CrossRefGoogle Scholar
62Villa, L. et al. (2013) Late angiotensin II receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms. Journal of Pathology. 229, 672-684CrossRefGoogle ScholarPubMed
63Segerer, S. et al. (2003) When renal allografts turn DARC. Transplantation 75, 1030-1034CrossRefGoogle ScholarPubMed
64Vielhauer, V. et al. (2009) Efficient renal recruitment of macrophages and T cells in mice lacking the duffy antigen/receptor for chemokines. American Journal of Pathology 175, 119-131CrossRefGoogle Scholar
65Tang, S. et al. (2003) Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. Journal of Clinical Investigation 111, 515-527CrossRefGoogle ScholarPubMed
66Yokoyama, H. et al. (1998) Urinary levels of chemokines (MCAF/MCP-1, IL-8) reflect distinct disease activities and phases of human IgA nephropathy. Journal of Leukocyte Biology 63, 493-499CrossRefGoogle ScholarPubMed
67Ni, J. et al. (2012) Influence of irbesartan on the urinary excretion of cytokines in patients with chronic kidney disease. Chinese Medical Journal (Engl) 125, 1147-1152Google ScholarPubMed
68Khajehdehi, P. et al. (2011) Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-beta and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: a randomized, double-blind and placebo-controlled study. Scandinavian Journal of Urology and Nephrology 45, 365-370CrossRefGoogle ScholarPubMed
69Wada, T. et al. (1994) Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. Journal of Experimental Medicine 180, 1135-1140CrossRefGoogle ScholarPubMed
70Rovin, B.H. et al. (2005) Urine chemokines as biomarkers of human systemic lupus erythematosus activity. Journal of American Society of Nephrology 16, 467-473CrossRefGoogle ScholarPubMed
71Souto, M.F. et al. (2008) Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatric Research 64, 637-642CrossRefGoogle ScholarPubMed
72Lee, E.Y., Lee, Z.H. and Song, Y.W. (2009) CXCL10 and autoimmune diseases. Autoimmunity Reviews 8, 379-383CrossRefGoogle ScholarPubMed
73Gomez-Chiarri, M. et al. (1996) Interferon-inducible protein-10 is highly expressed in rats with experimental nephrosis. American Journal of Pathology 148, 301-311Google ScholarPubMed
74Han, G.D. et al. (2006) IFN-inducible protein-10 plays a pivotal role in maintaining slit-diaphragm function by regulating podocyte cell-cycle balance. Journal of American Society of Nephrology 17, 442-453CrossRefGoogle Scholar
75Avihingsanon, Y. et al. (2006) Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis. Kidney International 69, 747-753CrossRefGoogle ScholarPubMed
76Lu, J. et al. (2011) Gene expression of TWEAK/Fn14 and IP-10/CXCR3 in glomerulus and tubulointerstitium of patients with lupus nephritis. Nephrology (Carlton) 16, 426-432CrossRefGoogle ScholarPubMed
77Wang, A. et al. (2009) CXCR4/CXCL12 hyperexpression plays a pivotal role in the pathogenesis of lupus. Journal of Immunology 182, 4448-4458CrossRefGoogle Scholar
78Sayyed, S.G. et al. (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52, 2445-2454CrossRefGoogle Scholar
79Gutwein, P. et al. (2009) CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. American Journal of Pathology 174, 2061-2072CrossRefGoogle ScholarPubMed
80Teramoto, K. et al. (2008) Microarray analysis of glomerular gene expression in murine lupus nephritis. Journal of Pharmacological Sciences 106, 56-67CrossRefGoogle ScholarPubMed
81Izquierdo, M.C. et al. (2012) TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney International 81, 1098-1107CrossRefGoogle ScholarPubMed
82Bazan, J.F. et al. (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640-644CrossRefGoogle ScholarPubMed
83Chakravorty, S.J. et al. (2002) Fractalkine expression on human renal tubular epithelial cells: potential role in mononuclear cell adhesion. Clinical and Experimental Immunology 129, 150-159CrossRefGoogle ScholarPubMed
84Donadelli, R. et al. (2003) Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways. Journal of American Society of Nephrology 14, 2436-2446CrossRefGoogle ScholarPubMed
85Segerer, S. et al. (2002) Expression of the fractalkine receptor (CX3CR1) in human kidney diseases. Kidney International 62, 488-495CrossRefGoogle ScholarPubMed
86Furuichi, K. et al. (2001) Upregulation of fractalkine in human crescentic glomerulonephritis. Nephron 87, 314-320CrossRefGoogle ScholarPubMed
87Nakatani, K. et al. (2010) Fractalkine expression and CD16+ monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. American Journal of Physiology - Renal Physiology 299, F207-F216CrossRefGoogle ScholarPubMed
88Feng, L. et al. (1999) Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR1 rapid communication. Kidney International 56, 612-620CrossRefGoogle ScholarPubMed
89Cockwell, P. et al. (2002) Chemoattraction of T cells expressing CCR5, CXCR3 and CX3CR1 by proximal tubular epithelial cell chemokines. Nephrology Dialysis Transplantation 17, 734-744CrossRefGoogle ScholarPubMed
90Birn, H. et al. (2000) Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. Journal of Clinical Investigation 105, 1353-1361CrossRefGoogle ScholarPubMed
91Cui, S. et al. (1996) Megalin/gp330 mediates uptake of albumin in renal proximal tubule. American Journal of Physiology 271, F900-F907Google ScholarPubMed
92Birn, H. and Christensen, E.I. (2006) Renal albumin absorption in physiology and pathology. Kidney International 69, 440-449CrossRefGoogle ScholarPubMed
93Baggiolini, M. (1998) Chemokines and leukocyte traffic. Nature 392, 565-568CrossRefGoogle ScholarPubMed
94Suzuki, Y. et al. (2001) Renal tubulointerstitial damage caused by persistent proteinuria is attenuated in AT1-deficient mice: role of endothelin-1. American Journal of Pathology 159, 1895-1904CrossRefGoogle ScholarPubMed
95Wang, Y. et al. (1997) Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. Journal of American Society of Nephrology 8, 1537-1545CrossRefGoogle ScholarPubMed
96Rangan, G.K. et al. (1999) Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats. Kidney International 56, 118-134CrossRefGoogle ScholarPubMed
97Takase, O. et al. (2003) Gene transfer of truncated IkappaBalpha prevents tubulointerstitial injury. Kidney International 63, 501-513CrossRefGoogle ScholarPubMed
98Morigi, M. et al. (2002) Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. Journal of American Society of Nephrology 13, 1179-1189Google Scholar
99Nakajima, H. et al. (2004) Activation of the signal transducer and activator of transcription signaling pathway in renal proximal tubular cells by albumin. Journal of American Society of Nephrology 15, 276-285CrossRefGoogle ScholarPubMed
100Reich, H. et al. (2005) Albumin activates ERK via EGF receptor in human renal epithelial cells. Journal of American Society of Nephrology 16, 1266-1278CrossRefGoogle ScholarPubMed
101Milligan, G. (2001) Oligomerisation of G-protein-coupled receptors. Journal of Cell Science 114, 1265-1271CrossRefGoogle ScholarPubMed
102Mellado, M. et al. (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO Journal 20, 2497-2507CrossRefGoogle ScholarPubMed
103Rajagopal, R. et al. (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. Journal of Neuroscience 24, 6650-6658CrossRefGoogle ScholarPubMed
104Wenzel, U. et al. (1997) Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney International 51, 770-776CrossRefGoogle ScholarPubMed
105Fujinaka, H. et al. (1997) Suppression of anti-glomerular basement membrane nephritis by administration of anti-monocyte chemoattractant protein-1 antibody in WKY rats. Journal of American Society of Nephrology 8, 1174-1178CrossRefGoogle ScholarPubMed
106Wu, X. et al. (1994) Cytokine-induced neutrophil chemoattractant mediates neutrophil influx in immune complex glomerulonephritis in rat. Journal of Clinical Investigation 94, 337-344CrossRefGoogle ScholarPubMed
107Garcia, G.E. et al. (2003) Mononuclear cell-infiltrate inhibition by blocking macrophage-derived chemokine results in attenuation of developing crescentic glomerulonephritis. American Journal of Pathology 162, 1061-1073CrossRefGoogle ScholarPubMed
108Garcia, G.E. et al. (2007) Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis. American Journal of Pathology 170, 1485-1496CrossRefGoogle ScholarPubMed
109Lee, E.Y. et al. (2009) The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. American Journal of Physiology - Renal Physiology 297, F85-F94CrossRefGoogle ScholarPubMed
110Kanamori, H. et al. (2007) Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochemical and Biophysical Research Communications 360, 772-777CrossRefGoogle ScholarPubMed
111Kang, Y.S. et al. (2010) CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney International 78, 883-894CrossRefGoogle ScholarPubMed
112Panzer, U. et al. (1999) The chemokine receptor antagonist AOP-RANTES reduces monocyte infiltration in experimental glomerulonephritis. Kidney International 56, 2107-2115CrossRefGoogle ScholarPubMed
113Chow, F. et al. (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney International 65, 116-128CrossRefGoogle ScholarPubMed
114Vielhauer, V. et al. (2004) CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney International 66, 2264-2278CrossRefGoogle ScholarPubMed
115Ninichuk, V. et al. (2005) Delayed chemokine receptor 1 blockade prolongs survival in collagen 4A3-deficient mice with Alport disease. Journal of American Society of Nephrology 16, 977-985CrossRefGoogle ScholarPubMed
116Ding, M. et al. (2006) Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Medicine 12, 1081-1087CrossRefGoogle ScholarPubMed
117Inoue, A. et al. (2005) Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis and Rheumatology 52, 1522-1533CrossRefGoogle ScholarPubMed
118Laborde, E. et al. (2011) Discovery, optimization, and pharmacological characterization of novel heteroaroylphenylureas antagonists of C–C chemokine ligand 2 function. Journal of Medical Chemistry 54, 1667-1681CrossRefGoogle ScholarPubMed
119Sakurai, H. et al. (1996) Activation of transcription factor NF-kappa B in experimental glomerulonephritis in rats. Biochimica et Biophysica Acta 1316, 132-138CrossRefGoogle ScholarPubMed
120Duthey, B. et al. (2010) Anti-inflammatory effects of the GABA(B) receptor agonist baclofen in allergic contact dermatitis. Experimantal Dermatology 19, 661-666CrossRefGoogle ScholarPubMed
121Wan, Y. and Evans, R.M. (2010) Rosiglitazone activation of PPARgamma suppresses fractalkine signaling. Journal of Molecular Endocrinology 44, 135-142CrossRefGoogle ScholarPubMed
122Hasegawa, H. et al. (2003) Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis and Rheumatology 48, 2555-2566CrossRefGoogle ScholarPubMed
123Kulkarni, O. et al. (2009) Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. Journal of Pharmacology and Experimental Therapeutics 328, 371-377CrossRefGoogle ScholarPubMed
124Plater-Zyberk, C. et al. (1997) Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunology Letters 57, 117-120CrossRefGoogle ScholarPubMed
125Matsui, M. et al. (2002) Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. Journal of Neuroimmunology 128, 16-22CrossRefGoogle ScholarPubMed
126Kothandan, G., Gadhe, C.G. and Cho, S.J. (2012) Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study. PLoS One 7, e32864CrossRefGoogle ScholarPubMed
127Zheng, C. et al. (2011) Discovery of INCB10820/PF-4178903, a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist. Bioorganic and Medicinal Chemistry Letters 21, 1442-1446CrossRefGoogle ScholarPubMed
128Reid, C. et al. (2006) Structure activity relationships of monocyte chemoattractant proteins in complex with a blocking antibody. Protein Engineering, Design and Selection 19, 317-324CrossRefGoogle ScholarPubMed
129Fagete, S. et al. (2009) Specificity tuning of antibody fragments to neutralize two human chemokines with a single agent. MAbs 1, 288-296CrossRefGoogle ScholarPubMed
130Sapir, Y. et al. (2010) A fusion protein encoding the second extracellular domain of CCR5 arrests chemokine-induced cosignaling and effectively suppresses ongoing experimental autoimmune encephalomyelitis. Journal of Immunology 185, 2589-2599CrossRefGoogle ScholarPubMed
131Scalley-Kim, M.L. et al. (2012) A novel highly potent therapeutic antibody neutralizes multiple human chemokines and mimics viral immune modulation. PLoS One 7, e43332CrossRefGoogle ScholarPubMed
132Darisipudi, M.N. et al. (2011) Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. American Journal of Pathology 179, 116-124CrossRefGoogle ScholarPubMed
133Ble, A. et al. (2011) Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. American Journal of Nephrology 34, 367-372CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Nephrology Dialysis Transplantation-Educational for kidney and blood pressure related disorders

http://www.ndt-educational.org/

The National Kidney Foundation's cyberNephrology Center is a gateway to Internet-based aids to the practice of nephrology.

http://www.cybernephrology.org/

International Society of Nephrology

http://www.theisn.org/

American Society of Nephrology

http://www.asn-online.org/