Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T06:41:54.674Z Has data issue: false hasContentIssue false

MEMBRANE-BOUND GLYCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE AND MULTIPHASIC ERYTHROCYTE SUGAR TRANSPORT

Published online by Cambridge University Press:  30 August 2019

KAREN S. HEARD
Affiliation:
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Aveneue North, Worcester, MA 01655, USA
MELISSA DIGUETTE
Affiliation:
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Aveneue North, Worcester, MA 01655, USA
ALEX C. HEARD
Affiliation:
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Aveneue North, Worcester, MA 01655, USA
ANTHONY CARRUTHERS
Affiliation:
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 55 Lake Aveneue North, Worcester, MA 01655, USA
Get access

Abstract

Net sugar import by human erythrocytes consists of ATP-modulated rapid and slow phases while sugar export consists of a single slow phase. We have proposed that this behaviour results from obligate substrate tunnelling from transporter to bulk cytosol through a complex containing high-affinity, low-capacity sugar binding sites (Cloherty, Sultzman, Zottola & Carruthers, 1995). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to compartmentalize ATP delivery to erythrocyte membrane ATPases and interact directly with the erythrocyte glucose transporter in vitro. The present study examines the possibility that GAPDH is an obligate component of the hypothesized sugar-binding complex. GAPDH remains associated with the erythrocyte membrane following cell lysis and remains associated with the cytoskeleton under conditions where more than 99 % of the membrane glucose transport protein (GLUT1) is released by detergent (Triton X-100). GAPDH is released from erythrocyte membranes upon exposure to Mg.ATP or to NADH. ATP displacement of membrane-bound GAPDH is half-maximal at 200 µM ATP and appears to involve ATP interaction with multiple, co-operative sites. GAPDH interaction with purified tetrameric GLUT1 is saturable, co-operative and also inhibited by ATP. ATP inhibition of GAPDH binding to purified tetrameric GLUT1 is less effective than ATP inhibition of GAPDH binding to intact erythrocyte membranes. Removal of cellular GAPDH by exposing erythrocyte membranes to NADH prior to membrane resealing neither affects ATP modulation of sugar transport nor reduces biphasic net sugar uptake to a single phase. We conclude that ATP-sensitive GAPDH interaction with the cytoplasmic surface of erythrocyte membranes and GLUT1 is responsible neither for ATP modulation of sugar transport nor for multiphasic net sugar import by human red cells.

Type
Physiological Society Symposium
Copyright
The Physiological Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)