Hostname: page-component-7b9c58cd5d-dkgms Total loading time: 0 Render date: 2025-03-21T14:46:24.741Z Has data issue: false hasContentIssue false

Learning to hesitate

Published online by Cambridge University Press:  14 March 2025

Ambroise Descamps*
Affiliation:
Oxera Consulting LLP, Brussels, Belgium
Sébastien Massoni*
Affiliation:
Université de Lorraine, Université de Strasbourg, CNRS, BETA, Nancy, France
Lionel Page*
Affiliation:
Economics Discipline Group, University of Technology Sydney, Ultimo, Australia

Abstract

We investigate how people make choices when they are unsure about the value of the options they face and have to decide whether to choose now or wait and acquire more information first. In an experiment, we find that participants deviate from optimal information acquisition in a systematic manner. They acquire too much information (when they should only collect little) or not enough (when they should collect a lot). We show that this pattern can be explained as naturally emerging from Fechner cognitive errors. Over time participants tend to learn to approximate the optimal strategy when information is relatively costly.

Type
Original Paper
Copyright
Copyright © 2021 Economic Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10683-021-09718-7.

References

Abdellaoui, M, Bleichrodt, H, & Paraschiv, C (2007). Loss aversion under prospect theory: A parameter-free measurement. Management Science, 53, 16591674. 10.1287/mnsc.1070.0711CrossRefGoogle Scholar
Baltussen, G, Post, GT, van den Assem, MJ, & Wakker, PP (2012). Random incentive systems in a dynamic choice experiment. Experimental Economics, 15, 418443. 10.1007/s10683-011-9306-4CrossRefGoogle Scholar
Bearden, JN, Rapoport, A, & Murphy, RO (2006). Sequential observation and selection with rank-dependent payoffs: An experimental study. Management Science, 52, 14371449. 10.1287/mnsc.1060.0535CrossRefGoogle Scholar
Bleichrodt, H, & Wakker, PP (2015). Regret theory: A bold alternative to the alternatives. The Economic Journal, 125, 493532. 10.1111/ecoj.12200CrossRefGoogle Scholar
Bogacz, R, Brown, E, Moehlis, J, Holmes, P, & Cohen, JD (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113, 700 10.1037/0033-295X.113.4.700CrossRefGoogle ScholarPubMed
Caplin, A, & Martin, D (2016). The dual-process drift diffusion model: evidence from response times. Economic Inquiry, 54, 12741282. 10.1111/ecin.12294CrossRefGoogle Scholar
Charness, G, & Dave, C (2017). Confirmation bias with motivated beliefs. Games and Economic Behavior, 104, 123. 10.1016/j.geb.2017.02.015CrossRefGoogle Scholar
Conte, A, Hey, JD, & Moffatt, PG (2011). Mixture models of choice under risk. Journal of Econometrics, 162, 7988. 10.1016/j.jeconom.2009.10.011CrossRefGoogle Scholar
Della Seta, M, Gryglewicz, S, & Kort, PM (2014). Willingness to wait under risk and ambiguity, Berkeley: mimeo.Google Scholar
El-Gamal, MA, & Grether, DM (1995). Are people Bayesian? Uncovering behavioral strategies. Journal of the American Statistical Association, 90, 11371145. 10.1080/01621459.1995.10476620CrossRefGoogle Scholar
Fehr, E, & Rangel, A (2011). Neuroeconomic foundations of economic choice-recent advances. The Journal of Economic Perspectives, 25, 330. 10.1257/jep.25.4.3CrossRefGoogle Scholar
Fischbacher, U (2007). z-Tree: Zurich toolbox for ready-made economic experiments. Experimental Economics, 10, 171178. 10.1007/s10683-006-9159-4CrossRefGoogle Scholar
Frederick, S (2005). Cognitive reflection and decision making. The Journal of Economic Perspectives, 19, 2542. 10.1257/089533005775196732CrossRefGoogle Scholar
Friedman, D, & Rust, J (1993). The double auction market: Institutions, theories, and evidence, Boulder: Westview Press.Google Scholar
Fudenberg, D., Strack, P., & Strzalecki, T. (2015). Stochastic choice and optimal sequential sampling. Available at SSRN 2602927.CrossRefGoogle Scholar
Fudenberg, D, Strack, P, & Strzalecki, T (2018). Speed, accuracy, and the optimal timing of choices. American Economic Review, 108, 3651–84 10.1257/aer.20150742CrossRefGoogle Scholar
Gabaix, X, Laibson, D, Moloche, G, & Weinberg, S (2006). Costly information acquisition: Experimental analysis of a boundedly rational model. The American Economic Review, 96, 10431068. 10.1257/aer.96.4.1043CrossRefGoogle Scholar
Gold, JI, & Shadlen, MN (2002). Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299308. 10.1016/S0896-6273(02)00971-6CrossRefGoogle ScholarPubMed
Gollier, C (2004). The economics of risk and time, Cambridge: MIT Press.Google Scholar
Greiner, B (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal of the Economic Science Association, 1, 114125. 10.1007/s40881-015-0004-4CrossRefGoogle Scholar
Hey, JD, & Orme, C (1994). Investigating generalizations of expected utility theory using experimental data. Econometrica: Journal of the Econometric Society, 62, 12911326. 10.2307/2951750CrossRefGoogle Scholar
Holt, CA, & Laury, SK (2002). Risk aversion and incentive effects. American Economic Review, 92, 16441655. 10.1257/000282802762024700CrossRefGoogle Scholar
Jones, M, & Sugden, R (2001). Positive confirmation bias in the acquisition of information. Theory and Decision, 50, 5999. 10.1023/A:1005296023424CrossRefGoogle Scholar
Kahneman, D (2003). Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review, 93, 14491475. 10.1257/000282803322655392CrossRefGoogle Scholar
Kahneman, D, & Tversky, A (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47, 263291. 10.2307/1914185CrossRefGoogle Scholar
Krajbich, I, Oud, B, & Fehr, E (2014). Benefits of neuroeconomic modeling: New policy interventions and predictors of preference. The American Economic Review, 104, 501506. 10.1257/aer.104.5.501CrossRefGoogle Scholar
Kruse, T, & Strack, P (2015). Optimal stopping with private information. Journal of Economic Theory, 159, 702727. 10.1016/j.jet.2015.03.001CrossRefGoogle Scholar
Loomes, G, & Sugden, R (1986). Disappointment and dynamic consistency in choice under uncertainty. The Review of Economic Studies, 53, 271282. 10.2307/2297651CrossRefGoogle Scholar
Martin, V, Hurn, S, & Harris, D (2012). Econometric modelling with time series: Specification, estimation and testing, Cambridge: Cambridge University Press 10.1017/CBO9781139043205CrossRefGoogle Scholar
McDonald, R, & Siegel, D (1986). The value of waiting to invest. The Quarterly Journal of Economics, 101, 707728. 10.2307/1884175CrossRefGoogle Scholar
Oprea, R, Friedman, D, & Anderson, ST (2009). Learning to wait: A laboratory investigation. The Review of Economic Studies, 76, 11031124. 10.1111/j.1467-937X.2009.00543.xCrossRefGoogle Scholar
Perlow, LA, Okhuysen, GA, & Repenning, NP (2002). The speed trap: Exploring the relationship between decision making and temporal context. Academy of Management Journal, 45, 931955. 10.2307/3069323CrossRefGoogle Scholar
Rabin, M, & Schrag, JL (1999). First impressions matter: A model of confirmatory bias. Quarterly Journal of Economics, 114, 3782. 10.1162/003355399555945CrossRefGoogle Scholar
Radner, R, & Stiglitz, J (1984). A nonconcavity in the value of information. Bayesian Models in Economic Theory, 5, 3352.Google Scholar
Ratcliff, R, Smith, PL, Brown, SD, & McKoon, G (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20, 260281. 10.1016/j.tics.2016.01.007CrossRefGoogle ScholarPubMed
Sela, A, & Berger, J (2012). Decision quicksand: How trivial choices suck us in. Journal of Consumer Research, 39, 360370. 10.1086/662997CrossRefGoogle Scholar
Tartakovsky, A, Nikiforov, I, & Basseville, M (2014). Sequential analysis: Hypothesis testing and changepoint detection, Boca Raton: CRC Press 10.1201/b17279CrossRefGoogle Scholar
Treich, N (1997). Risk tolerance and value of information in the standard portfolio model. Economics Letters, 55, 361363. 10.1016/S0165-1765(97)00096-7CrossRefGoogle Scholar
Viefers, P., & Strack, P. (2014). Too proud to stop: Regret in dynamic decisions. Available at SSRN 2465840.CrossRefGoogle Scholar
Wakker, PP (2010). Prospect theory: For risk and ambiguity, Cambridge: Cambridge University Press 10.1017/CBO9780511779329CrossRefGoogle Scholar
Wald, A (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16, 117186. 10.1214/aoms/1177731118CrossRefGoogle Scholar
Wald, A, & Wolfowitz, J (1948). Optimum character of the sequential probability ratio test. The Annals of Mathematical Statistics, 19, 326339. 10.1214/aoms/1177730197CrossRefGoogle Scholar
Webb, R. (2013). Dynamic constraints on the distribution of stochastic choice: Drift Diffusion implies Random Utility. Unpublished, New York University.Google Scholar
Weiß, CH (2008). Thinning operations for modeling time series of counts—A survey. AStA Advances in Statistical Analysis, 92, 319341. 10.1007/s10182-008-0072-3CrossRefGoogle Scholar
Wilson, A (2014). Bounded memory and biases in information processing. Econometrica, 82, 22572294. 10.3982/ECTA12188CrossRefGoogle Scholar
Woodford, M (2014). Stochastic choice: An optimizing neuroeconomic model. The American Economic Review, 104, 495500. 10.1257/aer.104.5.495CrossRefGoogle Scholar
Yariv, L. (2002). I’ll see it when i believe it? A simple model of cognitive consistency.Google Scholar
Zwick, R, Rapoport, A, Lo, AKC, & Muthukrishnan, AV (2003). Consumer sequential search: Not enough or too much?. Marketing Science, 22, 503519. 10.1287/mksc.22.4.503.24909CrossRefGoogle Scholar
Supplementary material: File

Descamps et al. supplementary material

Descamps et. al. supplementary material
Download Descamps et al. supplementary material(File)
File 1.6 MB