The production potential of three arbuscular mycorrhizal fungi (AMF), AM-1004 (Glomus intraradices), AM-1209 (mixed indigenous AMF) and AM-1207 (Mycorise, commercial inocula), were examined separately in three fractions/forms (root-based, soil-based and mixture of roots + soil) at 40, 60, 80 and 105 days in raised beds. The beds were amended with organic matter to develop regression equations for predicting optimal AM production vis-à-vis time required for particular inocula using infectious propagules (IP) as the independent variable. The IP production observed in the system was found to vary among the different inocula used. AM-1004 and AM-1207 produced significantly higher propagule counts in root or soil-based samples and a mixture of both at 105 days as compared to AM-1209. Based on two-way ANOVA, irrespective of time, AM-1004 (root/soil-based) produced a significantly larger number of propagules, whereas propagules in the crude inoculum (roots + soil) of all three inocula were not significantly different. On the other hand, irrespective of AMF, significantly more propagules (in all forms) were observed at 105 days. Similarly, irrespective of time, AM-1004 produced significantly higher root colonization (MCP, mycorrhizal colonization percentage) in all three forms (roots: 65.95%; soil: 24.32; soil + roots: 58.03%). The MCP in roots was increased significantly with time of multiplication. However, there was not much improvement in the MCP of soil or in soil + roots fractions beyond 80 days. Further, prediction of the number of IP for the three AM inocula was mathematically derived separately from the Mitscherlish-Bray equation (Y = a – b*exp (–cD). Based on the maximum yield of propagules of the three inocula observed and fitted into equations, root-based AM-1004 and AM-1209 inocula were found to be more efficient in producing propagules in 65 days as compared to AM-1207, which produced propagules in 76 days. While comparing the overall combinations, AM-1004 and AM-1209 inocula used either as roots, soil or a mixture of both and have greater potential in producing more propagules in the shortest span of time. While taking into account the predicted values of AM-1209 crude inoculum, about 12 IP g−1 substrate can be achieved in 72 days. Therefore, if a farmer uses crude inocula (having zero time IP of about 0.8/g substrate) of AM 1209, a total production of about 12.12 million IP/m3 can be achieved in 72 days. These can be used for on-farm production.