Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T00:37:33.086Z Has data issue: false hasContentIssue false

A Wet Excavation Method for Root/Shoot Studies of Pearl Millet on the Sandy Soils of the Sahel

Published online by Cambridge University Press:  03 October 2008

M. V. K. Sivakumar
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Sahelian Center, BP 12404, Niamey, Niger
S. A. Salaam
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Sahelian Center, BP 12404, Niamey, Niger

Summary

Root/shoot relations of two cultivars of pearl millet (Pennisetum glaucum) were studied on a sandy soil at Sadore in Niger using a wet excavation method. For the first 10 days after emergence (DAE), the length of the seminal root showed an exponential growth rate while plant height increased more or less linearly. The maximum rooting depth for millet was 168 cm and the maximum number of root axes and primary laterals, 172 per plant. Root length continued to increase up to 75 DAE, the maximum length exceeding 5000 cm per plant. The proportion of total day matter accumulated in the roots decreased from 30% in the early stages to less than 20% by maturity. The wet excavation method is a promising technique for the rapid removal of intact root systems of pearl millet from the sandy soils of the Sahel.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azam-Ali, S. N., Gregory, P. J. & Monteith, J. L. (1984). Effects of planting density on water use and productivity of pearl millet (Pennisetum typhoides) grown on stored water. I. Growth of roots and shoots. Experimental Agriculture 20:203214.CrossRefGoogle Scholar
Begg, J. E. (1965). The growth and development of a crop of bulrush millet (Pennisetum typhoides). Journal of Agricultural Science, Cambridge 65:341344.CrossRefGoogle Scholar
Begg, J. E., Bierhiezen, J. F., Lemon, E. R., Misra, D. K., Slatyer, R. O. & Stern, W. R. (1964). Diurnal energy and water exchanges in bulrush millet in an area of high solar radiation. Agricultural Meteorology 12941312.Google Scholar
Böhm, W., Maduakor, H. & Taylor, H. M. (1977). Comparison of five methods for characterizing soybean rooting density and development. Agronomy Journal 69:415–419.CrossRefGoogle Scholar
Chopart, J. L. (1983). Etude du systeme racinaire du mil (Pennisetym typhoides) dans un sol sableux du Senegal. Agronomie Tropicale 38:3751.Google Scholar
Gregory, P. J. (1982). Interaction of root and shoot characteristics in the response of millet to drought. Drought Resistance in Crops with Emphasis on Rice, 135143. Las Banos, Phillippines: International Rice Research Institute.Google Scholar
Gregory, P. J. (1983). Response to temperature in a stand of pearl millet (Pennisetum typhoides S. & H.) III. Root Development. Journal of Experimental Botany 34:744756.CrossRefGoogle Scholar
Gregory, P. J. (1986). Response to temperature in a stand of pearl millet (Pennisetum typhoides S. & H.) VIII. Root growth. Journal of Experimental Botany 37:379388.CrossRefGoogle Scholar
Gregory, P. J. & Squire, G. R. (1979). Irrigation effects on roots and shoots of pearl millet (Pennisetum typhoides). Experimental Agriculture 15:161168.CrossRefGoogle Scholar
Gregory, P. J., McGowan, M., Biscoe, P. V. & Hunter, B. (1978). Water relations of winter wheat. 1. Growth of the root system. Journal of Agricultural Science, Cambridge 91:91102.CrossRefGoogle Scholar
Kanitkar, N. V. (1944). Dry farming in India. Scientific Monographs of Imperial Council of Agricultural Research 15:352.Google Scholar
Payne, W. A., Wendt, C. W. & Lascano, R. J. (1990). Root zone water balances of three low-input millet fields in Niger, West Africa. Agronomy Journal 82:813819.CrossRefGoogle Scholar
Siband, P. (1979). Evolution pondérale du système grain-plantule chez le mil (Pennisetum typhoides) au cours de l'épuisement du grain. Agronomie Tropicale 34:250253.Google Scholar
Soman, P. & Mahalakshmi, V. (1992). Root system of pearl millet. In Root Systems of Tropical Crops. Oxford, New Delhi (in press).Google Scholar
Tongoona, P., Muchena, S. C. & Hendrikz, J. A. (1984). The effects of dwarfing genes on root development in pearl millet (Pennisetum typhoids (Burm.) Stapf. & Hubbard) inbreds and hybrids. Zimbabwe Journal of Agricultural Research 22:6783.Google Scholar
Vidal, P. (1963). Croissance et nutrition minérale des mils (Pennisetum) cultivés au Sénégal. Thèse Ing. Doct., Université de Dakar.Google Scholar
Vorasoot, N. (1983). Root growth in intercropped pearl millet and groundnut. Thai Journal of Agricultural Science 16:279285.Google Scholar
West, L. T., Wilding, L. P., Landeck, J. K. & Calhoun, F. G. (1984). Soil Survey of the ICRISAT Sahelian Center, Niger, West Africa. Soil and Crop Sciences Department/TROPSOILS, Texas A & M University, College Station, Texas, USA.Google Scholar
Wetselaar, R. & Norman, M. J. T. (1960). Recovery of available soil nitrogen by annual fodder at Katherine Northern territory. Australian Journal of Agricultural Research 11:693.CrossRefGoogle Scholar