Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T16:28:39.948Z Has data issue: false hasContentIssue false

Water Use by Maize at Three Plant Densities

Published online by Cambridge University Press:  03 October 2008

Lloyd A. Downey
Affiliation:
C.S.I.R.O. Division of Irrigation Research, Griffith, N.S.W. 2680, Australia

Summary

Water use by maize at three densities was measured by a complete water balance, including soil moisture, rain, applied irrigation and deep drainage in crops irrigated so that relative turgidity at noon remained above 90 per cent (i.e. no-stress conditions). Total evapotranspiration between planting and harvest, 56 cm., was not significantly affected by density, but evapotranspiration was slightly higher at higher densities when ground cover was less than 50 per cent. Actual evapotranspiration rose to 1 cm. per day during anthesis and grain filling. A fifth of the water applied moved beyond the root zone, indicating that work on more permeable soils would be inaccurate if the deep drainage component was ignored.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bear, J., Zaslavsky, D. & Irmay, S. (1968). In Physical Principles of Water Percolation and Seepage. Arid Zone Research 29 (U.N.E.S.C.O.).Google Scholar
Cackett, K. E. & Metelerkamp, H. R. R. (1964). Rhodesia J. agric. Res. 2, 35.Google Scholar
Chaudhry, N. H. & Macksoud, S. W. (1967). West. Pakistan J. agric. Res. 5, 72.Google Scholar
Denmead, O. T. & Shaw, R. H. (1959). Agron. J. 51, 725.Google Scholar
Downey, L. A. (1969). Thesis for M.Sc. Agric. in Agronomy Dept., University of Sydney.Google Scholar
Downey, L. A. (1971a). J. Aust. Inst. agric. Sci. (in press).Google Scholar
Downey, L. A. (1971b). J. Aust. Inst. agric. Sci. (in press).Google Scholar
Dyer, K. L. (1965a). Proc. Soil Sci. Soc. Am. 29, 121.CrossRefGoogle Scholar
Dyer, K. L. (1965b). Proc. Soil Sci. Soc. Am. 29, 170.Google Scholar
Gates, D. M. & Hanks, R. J. (1967). In Irrigation of Agricultural Lands (Ed. Hagan, R. M.et al.). Madison: Am. Soc. Agron.Google Scholar
Hagan, R. M. & Laborde, J. F. (1964). Proc. 8th Inter. Congress Soil Sci., Bucharest, Romania, 399.Google Scholar
Loveday, J., Saunt, J. E., Fleming, P. M. & Muirhead, W. A. (1970). Aust. J. Expl Agric. and Anim. Husb. 10, 313.Google Scholar
Moolani, M. K. & Behl, N. K. (1968). Ann. Arid Zone, 7, 105.Google Scholar
Namken, L. N. & Lemon, E. R. (1960). Agron. J. 52, 643.Google Scholar
Muirhead, W. A., Loveday, J. & Saunt, J. E. (1970). Aust. J. Expl Agric. and Anim. Husb. 10, 325.Google Scholar
Robins, J. S. & Domingo, C. E. (1953). Agron. J. 45, 618.Google Scholar
Shmueli, E. (1964). Proc. 8th Inter. Congress Soil Sci. Bucharest, Roumania, 423.Google Scholar
Slatyer, R. O. & Barrs, H. D. (1965). In Methodology of Plant Eco-physiology: Proceedings of the Montpellior Symposium (U.N.E.S.C.O.) 25, 331.Google Scholar
Tisdall, A. L. (1951). Aust. J. agric. Res. 2, 243.Google Scholar
Yao, A. Y. M. & Shaw, R. H. (1964). Agron.J. 56, 147.Google Scholar