Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T19:57:29.878Z Has data issue: false hasContentIssue false

UPTAKE AND UTILIZATION OF 5-SPLIT NITROGEN TOPDRESSING IN AN IMPROVED AND A TRADITIONAL RICE CULTIVAR IN THE BHUTAN HIGHLANDS

Published online by Cambridge University Press:  02 July 2012

BHIM BAHADUR GHALEY*
Affiliation:
Renewable Natural Resources Research Centre, Yusipang, Council for Renewable Natural Resources Research of Bhutan, Ministry of Agriculture, Bhutan
*
Corresponding author. Email: [email protected]; Present address: Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 30, DK-2630 Taastrup, Denmark.

Summary

The uptake of urea fertilizer (NDFF), applied with 150 kg nitrogen (N) ha−1, topdressed in five splits of 30 kg N ha−1 (30 N) each at 7, 26, 45, 70 and 83 days after transplanting (DAT) of rice (Oryza sativa L.), was investigated in an improved (Khangma Maap, KM) and a traditional (Janam, JN) cultivar in Bhutan highlands, using enriched 15N stable isotope. The treatments were arranged in a split–split plot design, with N fertilizer levels as main plots, cultivars as subplots and topdressing treatments as sub-subplots, with all the sub-subplots receiving the same dose except different timing of one split of enriched 15N to determine partial N fertilize use efficiency at each split dose. Although cultivar differences were not recorded in soil N accumulation and in total dry matter N, KM produced 21% higher grain yields compared to JN due to higher grain harvest index and partial factor productivity of N. Irrespective of the cultivars, topdressing timing had significant effects on NDFF, with highest mean N recovery (REN) of 29% of applied 30 N at 45 DAT during active tillering stage, resulting in mean NDFF total (grain + straw) uptake of 8.71 kg N ha−1 compared to least effective topdressing timing at 7 DAT with mean REN of 12% and NDFF total of 3.51 kg N ha−1. In similarity to topdressing at 45 DAT, topdressing at 70 DAT (panicle initiation stage) was equally effective with mean REN of 27% across the cultivars. Hence, fertilizer N topdressing recommendations that combine use of improved cultivars with N applications timed to coincide with maximum crop demand at 45 and 70 DAT, could enhance N fertilizer use efficiency for increased rice yields as well as reduce N losses downstream, which can cause adverse off-site environmental effects.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, C., Bronson, K. F., Panuallah, G. M., Regmi, A. P., Saha, P. K., Dobermann, A., Olk, D. C., Hobbs, P. R. and Pasuquin, E. (1999). On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Research 64:273286.Google Scholar
Atlin, G. N., Lafitte, H. R., Tao, D., Laza, A., Amante, A. and Courtois, B. (2006). Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crops Research 97:4352.CrossRefGoogle Scholar
Azam, F. (1990). Comparative effects of organic and inorganic nitrogen-sources applied to a flooded soil on rice yield and availability of N. Plant and Soil 125:255262.CrossRefGoogle Scholar
Bandyopadhyay, K. K. and Sarkar, M. C. (2005). Nitrogen use efficiency, 15N balance, and nitrogen losses in flooded rice in an inceptisol. Communications in Soil Science and Plant Analysis 36:16611679.CrossRefGoogle Scholar
Bouman, B. A. M., Humphreys, E., Tuong, T. P. and Barker, R. (2007). Rice and water. Advances in Agronomy 92:187237.CrossRefGoogle Scholar
Bronson, K. F., Hussain, F., Pasuquin, E. and Ladha, J. K. (2000). Use of N-15 labelled soil in measuring nitrogen fertilizer recovery efficiency in transplanted rice. Soil Science Society of America Joiurnal 64:235239.CrossRefGoogle Scholar
Cassman, K. G., Dedatta, S. K., Amarante, S. T., Liboon, S. P., Samson, M. I. and Dizon, M. A. (1996a). Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice. Experimental Agriculture 32:427444.CrossRefGoogle Scholar
Cassman, K. G., Dobermann, A., Cruz, P. C. S., Gines, G. C., Samson, M. I., Descalsota, J. P., Alcantara, J. M., Dizon, M. A. and Olk, D. C. (1996b). Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant and Soil 182:267278.CrossRefGoogle Scholar
Cassman, K. G., Gines, G. C., Dizon, M. A., Samson, M. I. and Alcantara, J. M. (1996c). Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Research 47:112.Google Scholar
Cassman, K. G., Kropff, M. J., Gaunt, J. and Peng, S. (1993). Nitrogen use efficiency of rice reconsidered – what are the key constraints. Plant and Soil 45:471474.Google Scholar
Chettri, G. B., Ghimiray, M. and Floyd, C. N. (2003). Effects of farmyard manure, fertilizers and green manuring in rice-wheat systems in Bhutan: results from a long-term experiment. Experimental Agriculture 39:129144.CrossRefGoogle Scholar
Cooper, M., Rajatasereekul, S., Immark, S., Fukai, S. and Basnayake, J. (1999). Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype x environment interactions for grain yield. Field Crops Research 64:131151.Google Scholar
Dobermann, A. and Cassman, K. G. (2002). Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant and Soil 247:153175.CrossRefGoogle Scholar
Dobermann, A., Witt, C., Abdulrachman, S., Gines, H. C., Nagarajan, R., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Simbahan, G. C. and Adviento, M. A. A. (2003). Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agronomy Journal 95:913923.CrossRefGoogle Scholar
Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Kongchum, M., Sookthongsa, J., Sun, Q., Fu, R., Simbahan, G. C. and Adviento, M. A. A. (2002). Site-specific nutrient management for intensive rice cropping system in Asia. Field Crops Research 74:3766.CrossRefGoogle Scholar
Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Kongchum, M., Sookthongsa, J., Sun, Q., Fu, R., Simbahan, G. C. and Adviento, M. A. A. (2008). Site-specific nutrient management for intensive rice cropping system in Asia. Field Crops Research 74:3766.CrossRefGoogle Scholar
Genstat 8.1. (2005). Lawes Agricultural Trust (Rothamsted Experimental Station). Water House Street, UK: VSN International Ltd.Google Scholar
Ghaley, B. B. and Christiansen, J. L. (2010). On-farm assessment of mineral nitrogen and cultivar effects on rice productivity in Bhutan Highlands. Acta Agriculturae Scandinavica, Section B-Soil & Plant science 60 (5):460471.Google Scholar
Ghaley, B. B., Hauggaard-Nielsen, H., Høgh-Jensen, H. and Jensen, E. S. (2005). Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutrient Cycling in Agroecosystems 73:201212.Google Scholar
Ghaley, B. B., Høgh-Jensen, H. and Christiansen, J. L. (2010). Recovery of nitrogen fertilizer by traditional and improved rice cultivars in the Bhutan Highlands. Plant and Soil 332:233246.Google Scholar
Ghosh, A. and Sharma, A. R. (1999). Effect of combined use of organic manure and nitrogen fertilizer on the performance of rice under flood-prone lowland conditions. Journal of Agricultural Science 132:461465.CrossRefGoogle Scholar
Hossain, M. F., White, S. K., Elahi, S. F., Sultana, N., Choudhury, M. H. K., Alam, Q. K., Rother, J. A. and Gaunt, J. L. (2005). The efficiency of nitrogen fertilizer for rice in Bangladeshi farmers’ fields. Field Crops Research 93:94107.Google Scholar
Inthapanya, P., Sipaseuth, P., Sihavong, P., Sihathep, V., Chanphengsay, M., Fukai, S. and Basnayake, J. (2000). Genotypic performance under fertilised and non-fertilised conditions in rainfed lowland rice. Field Crops Research 65:114.CrossRefGoogle Scholar
Jenkinson, D. S., Fox, R. H. and Rayner, J. H. (1985). Interactions between fertilizer nitrogen and soil-nitrogen – the so-called priming effect. Journal of Soil Science 36:425444.Google Scholar
Jing, Q., Bouman, B., van Keulen, H., Hengsdijk, H., Cao, W. X. and Dai, T. B. (2008). Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agricultural Systems 98:177188.Google Scholar
MOA (2001). Renewable Natural Resources Statistics of 2000. Thimphu, Bhutan: Ministry of Agriculture.Google Scholar
MOA (2004). Renewable Natural Resources Statistics. Thimphu, Bhutan: Ministry of Agriculture.Google Scholar
Olk, D. C., Cassman, K. G., Simbahan, G., Cruz, P. C. S., Abdulrachman, S., Nagarajan, R., Tan, P. S. and Satawathananont, S. (1999). Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency. Nutrient Cycling in Agroecosystems 53:3541.CrossRefGoogle Scholar
Peng, S. B. and Cassman, K. G. (1998). Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy Journal 90:178185.CrossRefGoogle Scholar
Rao, A. C. S., Smith, J. L., Papendick, R. I. and Parr, J. F. (1991). Influence of added nitrogen interactions in estimating recovery efficiency of labelled nitrogen. Soil Science Society of America Journal 55:16161621.CrossRefGoogle Scholar
Romyen, P., Hanviriyapant, P., Rajatasereekul, S., Khunthasuvon, S., Fukai, S., Basnayake, J. and Skulkhu, E. (1998). Lowland rice improvement in northern and northeast Thailand 2. Cultivar differences. Field Crops Research 59:109119.Google Scholar
Roper, M. M. and Ladha, J. K. (1995). Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant and Soil 174:211224.CrossRefGoogle Scholar
Saito, K., Atlin, G. N., Linquist, B., Phanthaboon, K., Shiraiwa, T. and Horie, T. (2007). Performance of traditional and improved upland rice cultivars under nonfertilized and fertilized conditions in northern Laos. Crop Science 47:24732481.Google Scholar
Saito, K., Linquist, B., Atline, G. N., Phanthaboon, K., Shiraiwa, T. and Horie, T. (2006). Response of traditional and improved upland rice cultivars to N and P fertilizer in northern Laos. Field Crops Research 96:216223.Google Scholar
Samonte, S. O. P. B., Wilson, L. T., Medley, J. C., Pinson, S. R. M., McClung, A. M. and Lales, J. S. (2006). Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy Journal 98:168176.Google Scholar
Satyanarayana, V., Prasad, P. V. V., Murthy, V. R. K. and Boote, K. J. (2002). Influence of integrated use of farmyard manure and inorganic fertilizers on yield and yield components of irrigated lowland rice. Journal of Plant Nutrition 25:20812090.Google Scholar
Singh, U., Ladha, J. K., Castillo, E. G., Punzalan, G., Tirol-Padre, A. and Duqueza, M. (1998). Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Research 58:3553.Google Scholar
Tang, Q. Y., Peng, S. B., Buresh, R. J., Zou, Y. B., Castilla, N. P., Mew, T. W. and Zhong, X. H. (2007). Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Research 102:219227.Google Scholar
Whitbread, A., Blair, G., Konboon, Y., Lefroy, R. and Naklang, K. (2003). Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agriculture, Ecosystems & Environment 100:251263.Google Scholar
Wopereis, M. C. S., Donovan, C., Nebie, B., Guindo, D. and N'Diaye, M. K. (1999). Soil fertility management in irrigated rice systems in the Sahel and Savanna regions of West Africa Part I. Agronomic analysis. Field Crops Research 61:125145.Google Scholar
Xue, L. H. and Yang, L. Z. (2008). Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra. Biosystems Engineering 100:524534.CrossRefGoogle Scholar
Yadav, R. L. (2003). Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Research 81:3951.Google Scholar
Yin, Y., Impellitteri, C. A., You, S. and Allen, H. E. (2002). The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils. Science of the Total Environment 287:107119.CrossRefGoogle ScholarPubMed
Ying, J. F., Peng, S. B., Yang, G. Q., Zhou, N., Visperas, R. M. and Cassman, K. G. (1998) Comparison of high-yield rice in tropical and subtropical environments – II. Nitrogen accumulation and utilization efficiency. Field Crops Research 57:8593.Google Scholar
Zhang, Y. H., Fan, J. B., Zhang, Y. L., Wang, D. S., Huang, Q. W. and Shen, Q. R. (2007). N accumulation and translocation in four japonica rice cultivars at different N rates. Pedosphere 17:792800.CrossRefGoogle Scholar