Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T07:58:18.118Z Has data issue: false hasContentIssue false

ROLE OF NON-STRUCTURAL CARBOHYDRATE AND ITS CATABOLISM ASSOCIATED WITH SUB 1 QTL IN RICE SUBJECTED TO COMPLETE SUBMERGENCE

Published online by Cambridge University Press:  17 May 2012

DEBABRATA PANDA*
Affiliation:
Central Rice Research Institute, Cuttack-753 006, Odisha, India Rubber Research Institute of India Tura, Meghalaya-794 001, India
RAMANI KUMAR SARKAR
Affiliation:
Central Rice Research Institute, Cuttack-753 006, Odisha, India
*
§Corresponding author. Email: [email protected]

Summary

The present study is to characterise the non-structural carbohydrate (NSC) status and its catabolism along with elongation growth in rice cultivars either possessing or not possessing the Sub 1 quantitative trait locus (QTL), i.e. Swarna and Swarna Sub1 exposed to seven days of complete submergence. During submergence, Swarna accelerated the rate of stem and leaf elongation and rapidly consumed NSC. In contrast, Swarna Sub1 consumed energy resources more slowly and maintained similar growth rate to that of non-submerged plants. Swarna Sub1 showed better utilisation of carbohydrate than that of Swarna by progressive induction of alcohol dehydrogenase, starch phosphorylase and total and α-amylase enzyme activity during submergence. Overall, submergence tolerance conferred by the Swarna Sub1 QTL is correlated with better maintenance and utilisation of NSC than that of Swarna.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey-Serres, J. and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59:313339.CrossRefGoogle ScholarPubMed
Beck, E. and Ziegler, P. (1989). Biosynthesis and degradation of starch in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 40:9517l.CrossRefGoogle Scholar
Das, A., Nanda, B. B., Sarkar, R. K. and Lodh, S. B. (2000). Effect of complete submergence on the activity of Starch phosphorylase enzyme in rice (Oryza sativa L.) leaves. Journal of Plant Biochemistry and Biotechnology 9:4143.CrossRefGoogle Scholar
Das, K. K., Panda, D., Sarkar, R. K., Reddy, J. N. and Ismail, A. M. (2009). Submergence tolerance in relations to variable floodwater conditions in rice. Environmental and Experimental Botany 66:425434.CrossRefGoogle Scholar
Das, K. K., Sarkar, R. K. and Ismail, A. M. (2005). Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science 168:131136.Google Scholar
Ellis, M. H. and Setter, T. L. (1999). Hypoxia induces anoxia tolerance in completely submerged rice seedlings. Journal of Plant Physiology 154:190230.Google Scholar
Fukao, T., Xu, K., Ronald, P. C. and Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like gene regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell 18:20212034.CrossRefGoogle ScholarPubMed
Guglielminetti, L., Perata, P. and Alpi, A. (1995). Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiology 108:735741.Google Scholar
Menegus, F., Cattaruzza, L., Mattana, M., Beffagna, N. and Ragg, E. (1991). Response to anoxia in rice and wheat seedlings: changes in the pH of intracellular compartments, glucose-6-phosphate level and metabolic rate. Plant Physiology 95:760767.Google Scholar
Neeraja, C., Maghirang-Rodriguez, R., Pamplona, A., Heuer, S., Collard, B., Septiningsih, E., Vergara, G., Sanchez, D., Xu, K., Ismail, A. M. and Mackill, D. J. (2007). A marker-assisted backcross approach for developing submergence-tolerance rice cultivars. Theoretical Applied Genetics 115:767776.CrossRefGoogle Scholar
Panda, D., Sharma, S. G. and Sarkar, R. K. (2008). Chlorophyll fluorescence parameters, CO2 Photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany 88:127133.Google Scholar
Plaxton, W. C. (1996). The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology 47:185214.CrossRefGoogle ScholarPubMed
Ram, P. C., Lal, R. K. and Chaturvedi, G. S. (2000). Laboratory Manual for Physiology & Environmental Studies. Faizabad, India: Department of Plant Physiology, NDUAT.Google Scholar
Reddy, J. N., Sarkar, R. K., Patnaik, S. S. C., Singh, D. P., Singh, U. S., Ismail, A. M. and Mackill, D. J. (2010). Improvement of rice germplasm for rainfed lowlands of eastern India In the Proceedings of the SABRAO 13th-International Congress, Cairns, Australia. http://open.irri.org/sabrao/images/stories/conference/site/papers/apb09final00211.pdf [Accessed 15 April 2011].Google Scholar
Sarkar, R. K., Panda, D., Reddy, J. N., Patnaik, S. S. C., Mackill, D. J. and Ismail, A. M. (2009). Performance of submergence tolerant rice genotypes carrying the Sub1 QTL under stressed and non-stressed natural field conditions. Indian Journal of Agricultural Science 79:876883.Google Scholar
Sarkar, R. K., Reddy, J. N., Sharma, S. G. and Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. Current Science 91:899906.Google Scholar
Sauter, M. (2000). Rice in deep water: how to take heed against a sea of troubles. Naturwissenschaften 87:289303.Google Scholar
Septiningsih, E. M., Pamplona, A. M., Sanchez, D. L., Neeraja, C. N., Vergara, G. V., Heuer, S., Ismail, A. M. and Mackill, D. J. (2009). Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Annals of Botany 103:151160.Google Scholar
Singh, N., Dang, T., Vergara, G., Pandey, D., Sanchez, D., Neeraja, C., Septiningsih, E., Mendioro, M., Tecson-Mendoza, R., Ismal, A., Mackill, D. and Heuer, S. (2010). Molecular marker survey and expressional analysis of the rice submergence-tolerance genes SUB1A and SUB1C. Theoretical Applied Genetics doi:10.1007/s00122-010-1400-z.Google Scholar
Thimmaiah, S. K. (1999). Standard Methods of Biochemical Analysis. New Delhi: Kalayni.Google Scholar
Xu, K. and Mackill, D. J. (1996). A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding 2:219224.Google Scholar
Xu, K., Xu, X., Fukao, T., Canalas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C. and Mackill, D. J. (2006). Sub1A is an ethylene-responsive factor-like gene that confers submergence tolerance to rice. Nature 442:705708.CrossRefGoogle Scholar
Yoshida, S., Forno, D. A., Cock, J. H. and Gomez, K. A. (1976). Laboratory Manual for Physiological Studies of Rice. Manila, Philippines: IRRI, pp. 1446.Google Scholar