Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T07:55:39.048Z Has data issue: false hasContentIssue false

RESPONSES OF TWO LETTUCE CULTIVARS TO IRON DEFICIENCY

Published online by Cambridge University Press:  18 July 2012

NAJOUA MSILINI*
Affiliation:
Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
HOUNEIDA ATTIA
Affiliation:
Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
MOKDED RABHI
Affiliation:
Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, Centre de Biotechnologies de la Technopole de Borj-Cédria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
NAJOUA KARRAY
Affiliation:
Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
MOKHTAR LACHAÂL
Affiliation:
Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
ZEINEB OUERGHI
Affiliation:
Unité de Physiologie et de Biochimie de la Tolérance au Sel chez les Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
*
Corresponding author. Email: [email protected]

Summary

A comparative study of two lettuce varieties (Lactuca sativa: ‘Romaine’ and ‘Vista’) was conducted to understand the effect of iron deficiency on growth, biomass allocation, chlorophyll fluorescence and root and leaf enzymatic activity. After 15 days of growth in hydroponic solution under Fe-deficient and Fe-sufficient conditions, leaf chlorophyll concentration, activities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) in leaves extract, ferric chelate reductase (FCR) and phosphoenolpyruvate carboxylase (PEPC) in root extracts were measured. We found that there were significant differences in fresh matter accumulation and pigment concentration between the varieties. Fresh weight and total leaf area and leaf number were significantly reduced under iron deficiency. There was also a significant decrease in photosynthetic pigment concentration in both varieties. In response to Fe deficiency, ‘Vista’ variety showed higher FCR and PEPC activities compared to ‘Romaine’ variety. Moreover, this increase was accompanied by an enhanced accumulation of phenolic compound in roots of ‘Vista’ variety. These findings show that ‘Romaine’ was more affected by iron deficiency than ‘Vista’.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadía, J., López-Millán, A. F., Abadía, A. and Rombolà, A. (2002). Organic acids and Fe deficiency: a review. Plant Soil 24:7586.CrossRefGoogle Scholar
Alcántara, E., Cordeiro, A. M. and Barranco, D. (2003). Selection of olives varieties for tolerance to iron chlorosis. Journal of Plant Physiology 160:14671472.CrossRefGoogle ScholarPubMed
Ali, A., Ahmad, M., Riaz-ul-Haque, M. M. and Tufail, M. (1995). Chlorosis in lentil. II. Screening of varieties against iron-deficiency chlorosis. LENS Newsletter 22:2930.Google Scholar
Assimakopoulou, A. (2006). Effect of iron supply and nitrogen form on growth, nutritional status and ferric reducing activity of spinach in nutrient solution culture. Scientia Horticulturae 110:2129.CrossRefGoogle Scholar
Belkhodja, R., Morales, F., Sanz, M., Abadía, A. and Abadía, J. (1998). Iron deficiency in peach trees: effects on leaf chlorophyll and nutrient concentrations in flowers and leaves. Plant Soil 203:257268.CrossRefGoogle Scholar
Bertamini, M., Nedunchezhian, N. and Borghi, B. (2001). Effect of iron deficiency induced changes on photosynthetic pigments, Ribulose-1,5-Bisphosphate Carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot Noir) leaves. Photosynthetica 39:5965.CrossRefGoogle Scholar
Briat, J. F. (2007). Iron dynamics in plants. In Advances in Botanical Research. Incorporating Advances in Plant Pathology, 138169 (Eds Kader, J. C. and Delseny, M.). London, UK: Academic.Google Scholar
Chaney, R. L., Brown, J. C. and Tiffin, L. O. (1972). Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50:208213.CrossRefGoogle ScholarPubMed
Curie, C. and Briat, J. F. (2003). Iron transport and signaling in plants. Annual Review of Plant Biology 54:183206.CrossRefGoogle ScholarPubMed
Dakora, F. D. and Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:3547.CrossRefGoogle Scholar
Dekock, P. C., Hall, A. and Mcdonald, M. (1960). A relation between the ratios of phosphorus to iron and potassium to calcium in mustard leaves. Plant and Soil 12:128142.CrossRefGoogle Scholar
De La Guardia, M. D. and Alcántara, E. (2002). A comparison of ferric-chelate reductase and chlorophyll and growth ratio as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant Soil 241:4956.CrossRefGoogle Scholar
Dell'Orto, M., Santi, S., De Nisi, P., Cesco, S., Varanini, Z., Zocchi, G. and Pinton, R. (2000). Development of Fe deficiency response in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. Journal of Experimental Botany 51:695701.Google ScholarPubMed
De Nisi, P. and Zocchi, G. (2000). Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: activity and kinetic characterization. Journal of Experimental Botany 51:19031909.CrossRefGoogle Scholar
Dewanto, V., Wu, X., Adom, K. K. and Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agriculture and Food Chemistry 50:30103014.CrossRefGoogle ScholarPubMed
Gruber, B. and Kosegarten, H. (2002). Depressed growth of non chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. Journal of Plant Nutrition and Soil Science 165:111117.3.0.CO;2-B>CrossRefGoogle Scholar
Guerinot, M. L. (2001). Improving rice yields-ironing out the details. Natural Biotechnology 19:466469.CrossRefGoogle ScholarPubMed
Guikema, J. A. (1985). Fluorescence induction characteristics of Anacystis nidulans during recovery from iron deficiency. Journal of Plant Nutrition 8:891908.CrossRefGoogle Scholar
Guikema, J. A. and Sherman, L. A. (1983). Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiology 73:250256.CrossRefGoogle ScholarPubMed
Hell, R. and Stephan, U. W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta 216:541551.CrossRefGoogle ScholarPubMed
Hoagland, D. R. and Arnon, D. I. (1950). The Water Culture Method for Growing Plants Without Soil. California, USA: Berkley.Google Scholar
Jin, C. W., You, G. Y., He, Y. F., Tang, C., Wu, P. and Zheng, S. J. (2007). Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology 144:278285.CrossRefGoogle ScholarPubMed
Kang, H. M. and Saltveit, M. E. (2002). Antioxidant capacity of lettuce leaf tissue increases after wounding. Journal of Agriculture Food Chemistry 50:75367541.CrossRefGoogle ScholarPubMed
Kim, S. A. and Guerinot, M. L. (2007). Mining iron: iron uptake and transport in plants. FEBS letters 581:22732280.CrossRefGoogle ScholarPubMed
Krouma, A., Gharsalli, M. and Abdelly, C. (2003). Differences in response to iron deficiency among some lines of common bean. Journal of Plant Nutrition 26:22952305.CrossRefGoogle Scholar
Ksouri, R., Debez, A., Mahmoudi, H., Ouerghi, Z., Gharsalli, M. and Lachaal, M. (2007). Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency. Plant Physiology and Biochemistry 45:315322.CrossRefGoogle ScholarPubMed
Ksouri, R., Gharsalli, M. and Lachâal, M. (2005). Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. Journal of Plant Physiology 162:335341.CrossRefGoogle ScholarPubMed
Landsberg, E. C. (1982). Transfer cell formation in the root epidermis: a prerequisite for Fe-efficiency. Journal of Plant Nutrition 3:579592.CrossRefGoogle Scholar
Larbi, A., Abadía, A., Abadía, J. and Morales, F. (2006). Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research 89:113126.CrossRefGoogle ScholarPubMed
Lichtenthaler, H. K. (1988). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350383.CrossRefGoogle Scholar
Liorente, S., Lèon, A., Torrecillas, A. and Alcaraz, C. (1976). Leaf iron fractions and their relation with iron in Citrus. Agrochimica 20:204212.Google Scholar
López-Millán, A. F., Morales, F., Andaluz, S., Gogorcena, Y., Abadía, A., de las Rivas, J. and Abadía, J. (2000). Responses of sugar beet roots to iron deficiency: changes in carbon assimilation and oxygen use. Plant Physiology 124:885897.CrossRefGoogle ScholarPubMed
Mahmoudi, H., Koyro, H. W., Debez, A. and Abdelly, C. (2008). Comparison of two chickpea varieties regarding their responses to direct and induced Fe deficiency. Environmental and Experimental Botany 66:349356.CrossRefGoogle Scholar
Mahmoudi, H., Labidi, N., Ksouri, R., Gharsalli, M. and Abdelly, C. (2007). Differential tolerance to iron deficiency of chickpea varieties and Fe resupply effects. Comptes Rendus Biologies 330:237246.CrossRefGoogle ScholarPubMed
Morales, F., Abadía, A. and Abadía, J. (1991). Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L) leaves. Plant Physiology 97:886893.CrossRefGoogle ScholarPubMed
Mtimet, A. (2001). Soils of Tunisia, In Soil Resources of Southern and Eastern Mediterranean Countries, 243262 (Eds Zdruli, P., Steduto, P., Lacirignola, C. and Montanarella, L.). Italy: Bari.Google Scholar
Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A., Amouroux, P. and Rémésy, C. (2004). Health effect of vegetable based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clinical Nutrition 23:605614.CrossRefGoogle ScholarPubMed
Ouerghi, Z., Cornic, G., Roudani, M., Ayadi, A. and Brulfert, J. (2000). Effect of NaCl on photosynthesis of two wheat species (T. durum and T. aestivum) differing in their sensitivity to salt stress. Journal of Plant Physiology 156:335340.CrossRefGoogle Scholar
Rabhi, M., Barhoumi, Z., Ksouri, R., Abdelly, C. and Gharsalli, M. (2007). Interactive effects of salinity and iron deficiency in Medicago ciliaris. Comptes Rendus Biologies 330:779788.CrossRefGoogle ScholarPubMed
Rabotti, G. and Zocchi, G. (1994). Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots. Physiologiae Plantarum 90:779785.CrossRefGoogle Scholar
Riethman, H. C. and Sherman, L. A. (1988). Purification and characterization of an iron stress-induced chlorophyll-protein from cyanobacterium Anacystic nidulans R2. Biochimica and Biophysica Acta 935:141151.CrossRefGoogle Scholar
Rombolà, A. D., Gogorcena, Y., Larbi, A., Morales, F., Balde, E., Marangoni, B., Tagliavini, M. and Abadía, J. (2005). Iron deficiency-induced changes in carbon fixation and leaf elemental composition of sugar beet (Beta vulgaris) plants. Plant Soil 271:3945.CrossRefGoogle Scholar
Römheld, V. (1987). Different strategies for iron acquisition in higher plants. Physiologiae Plantarum 70:231234.CrossRefGoogle Scholar
Römheld, V. and Marschner, H. (1983). Mechanism of iron uptake by peanut plants: I. Fe3+ reduction, chelate splitting, and release of phenolics, Plant Physiology 71:949954.CrossRefGoogle Scholar
Römheld, V. and Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grass. Plant Physiology 80:175180.CrossRefGoogle Scholar
Sato, F. K., Nishida, K. and Yamada, Y. (1980). Activities of carboxylation enzymes and products of 14CO2 fixation in photoautotrophically cultured cells. Plant Sciences Letters 20:9197.CrossRefGoogle Scholar
Schmidt, W. (1999). Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist 141:126.CrossRefGoogle Scholar
Singleton, V. L. and Rosi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144158.CrossRefGoogle Scholar
Sun, B., Richardo-da-Silvia, J. M. and Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agriculture and Food Chemistry 46:42674274.CrossRefGoogle Scholar
Susín, S., Abián, J., Sánchez-Beyes, J. A., Peleato, M. L., Abadia, A., Gelpi, E. and Abadia, J. (1996). Riboflavin 3’- and 5’-sulphate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). Journal of Biological Chemistry 268:2095820965.CrossRefGoogle Scholar
Timperio, A. M., D'Amici, G. M., Barta, C., Loreto, F. and Zolla, L. (2007). Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. Journal of Experimental Botany 58:36953710.CrossRefGoogle ScholarPubMed
Welkie, G. W. and Miller, G. W. (1993). Plant iron uptake physiology by nonsiderophore systems. In Iron Chelation in Plants and Soil Microorganisms, 345370 (Eds Barton, L. L. and Hemming, L.). New York: Academic Press.CrossRefGoogle Scholar
Winder, T. L. and Nishio, J. N. (1995). Early iron deficiency stress response in leaves of sugar beet. Plant Physiology 108:14871494.CrossRefGoogle ScholarPubMed
Yeh, D. M., Lin, L. and Wright, C. J. (2000). Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot–root ratio of Spathiphyllum. Scientia Horticulturae 86:223233.CrossRefGoogle Scholar
Zaharieva, T. B., Gogorcena, Y. and Abadıa, J. (2004). Dynamics of metabolic responses to iron deficiency in sugar beet roots. Plant Science 166:10451050.CrossRefGoogle Scholar
Zocchi, G. and Cocucci, S. (1990). Fe uptake mechanism in Fe-efficient cucumber roots. Plant Physiology 92:908911.CrossRefGoogle ScholarPubMed
Zocchi, G., De Nisi, P., Dell'Orto, M., Espen, L. and Gallina, P. M. (2007). Iron deficiency differently affects metabolic responses in soybean roots. Journal of Experimental Botany 58:9931000.CrossRefGoogle ScholarPubMed