Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T07:56:20.408Z Has data issue: false hasContentIssue false

Redistribution of Fungicides in Coffee Trees

Published online by Cambridge University Press:  03 October 2008

J. L. Pereira
Affiliation:
Coffee Research Station, Ruiru, Kenya
H. R. Mapother
Affiliation:
Long Ashton Research Station, University of Bristol
B. K. Cooke
Affiliation:
Long Ashton Research Station, University of Bristol
Ellis Griffiths
Affiliation:
Department of Agricultural Botany, University College of Wales, Aberystwyth

Summary

Using coffee trees sprayed with cuprous oxide and captafol it has been shown that both fungicides are redistributed within the tree canopy by rain. Under conditions of light rain fungicides are removed from upper parts of trees and redeposited at lower levels within the canopy in amounts capable of providing effective protection against coffee berry disease (CBD). With heavy rainfall, however, redeposition of fungicide at effective levels is less likely to occur. The results are discussed in relation to the success of overhead boom sprayers in controlling CBD and the observations that shoots in the upper parts of coffee trees are an important source of spores of the CBD strain of Colletotrichum coffeanum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bock, K. R. (1963). Emp. J. exp. Agric. 31, 97.Google Scholar
Courshee, R. J. (1967). In Fungicides, an advanced treatise, Vol. 1 (Ed. Torgeson, D. C.). New York: Academic Press.Google Scholar
Gibbs, J. N. (1972). Ann. appl. Biol. 70, 35.CrossRefGoogle Scholar
Griffiths, E. & Gibbs, J. N. (1969). Ann. appl. Biol. 64, 523.CrossRefGoogle Scholar
Griffiths, E., Gibbs, J.N. & Waller, J. M. (1971). Ann. appl. Biol. 67, 45.CrossRefGoogle Scholar
Hislop, E. C. (1965). Ann. Rep. Long Ashton Res. Stn. for 1964, 175.Google Scholar
Hislop, E. C. (1966a). Ann. appl. Biol. 57, 475.CrossRefGoogle Scholar
Hislop, E. C. (1966b). Ann. Rep. Long Ashton Res. Stn. for 1965, 193.Google Scholar
Hislop, E. C. (1967). Ann. Rep. Long Ashton Res. Stn. for 1966, 184.Google Scholar
Hislop, E. C. & Cox, T. W. (1970). Ann. appl. Biol. 66, 89.CrossRefGoogle Scholar
Martin, J. T. (1956). Rep. agric. hort. Res. Sta. Bristol 1955, 125.Google Scholar
Mulinge, S. K. (1971). Trans. Br. mycol. Soc. 56, 478.CrossRefGoogle Scholar
Nutman, F. J. & Roberts, F. M. (1960a). Trans. Br. mycol. Soc. 43, 489.CrossRefGoogle Scholar
Nutman, F. J. & Roberts, F. M. (1960b). Trans. Br. mycol. Soc. 43, 643.CrossRefGoogle Scholar
Nutman, F. J. & Roberts, F. M. (1961). Trans. Br. mycol. Soc, 44, 511.CrossRefGoogle Scholar
Nutman, F. J. & Roberts, F. M. (1969). Ann. appl. Biol. 64, 101.CrossRefGoogle Scholar
Pereira, J. L. & Mapother, H. R. (1972). Expl Agric. 8, 117.CrossRefGoogle Scholar
Somers, E. & Thomas, W. D. E. (1956). J. Sci. Food Agr. 7, 655.CrossRefGoogle Scholar
Waller, J. M. (1971). Expl Agric. 7, 303.CrossRefGoogle Scholar
Waller, J. M. (1972). Ann. appl. Biol. 71, 1.CrossRefGoogle Scholar