Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-18T19:53:03.872Z Has data issue: false hasContentIssue false

PHOTOSYNTHETIC CHARACTERISTICS AND FIBRE PRODUCTION FOLLOWING DEFOLIATION IN ATTALEA FUNIFERA MART., ARECACEAE, GROWING UNDER FULL SUN AND FOREST UNDERSTOREY

Published online by Cambridge University Press:  01 March 2013

THEDE CAIRES PAMPONET
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
FÁBIO PINTO GOMES*
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
ALEX-ALAN FURTADO DE ALMEIDA
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
MARCELO SCHRAMM MIELKE
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
LUANA MAHÉ COSTA GOMES
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
ANDRESA MUNIZ PEDROSA
Affiliation:
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Laboratório de Fisiologia Vegetal, Rodovia BR 415, Km 16, Ilhéus, BA 45662-000, Brazil
*
Corresponding author. Email: [email protected]

Summary

The effects of leaves cut during fibre harvesting of Attalea funifera under contrasting irradiance availability were evaluated, studying defoliation-induced changes in photosynthetic and growth characteristics and fibre production in adult individuals of A. funifera growing under full sun and forest understorey. Fibre harvesting was performed with or without (control plants) leaf removal twice in a 12-month interval. Maximum measured values of net photosynthesis (A), stomatal conductance and transpiration were higher in full sun defoliated palms than in non-defoliated palms in the same environment or in understorey palms of the two treatments. Non-defoliated palms from the two environments emitted more leaves than defoliated palms in the same evaluation period. The increment in the leaf-level rate of carbon assimilation following defoliation did not lead to high production of fibre, suggesting that the photosynthetic compensation for leaf removal was not effective, at least during the period of evaluation. The results indicate that leaf removal during harvesting did not represent an advantage for fibre production and may even lead to decreases in leaf and fibre production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anten, N. P. R. and Ackerly, D. D. (2001). Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm. Functional Ecology 15:252262.Google Scholar
Barry, K. M., Quentin, A., Eyles, A. and Pinkard, E. A. (2012). Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière. Tree Physiology 32:2435.Google Scholar
Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology 20:15271532.Google Scholar
Calvez, C. (1976). Influences on oil palm yield of pruning at different levels. Oleagineux 1:5758.Google Scholar
Carvalho, R. M., Martins, F. R. and Santos, F. A. M. (1999). Leaf ecology of pre-reproductive ontogenetic stages of the palm tree Euterpe edulis Mart. (Arecaceae). Annals of Botany 83:225233.Google Scholar
Chapin, F. S., Schulze, E.-D. and Mooney, H. A. (1990). The ecology and economics of storage plants. Annual Review of Ecology and Systematics 21:423447.Google Scholar
Chazdon, R. L. (1991). Effects of leaf and ramet removal on growth and reproduction of Geonoma congesta, a clonal understorey palm. Journal of Ecology 79:11371146.CrossRefGoogle Scholar
Cunningham, S. A. (1997). The effect of light environment, leaf area, and stored carbohydrates on inflorescence production by a rain forest understory palm. Oecologia 111:3644.CrossRefGoogle ScholarPubMed
d'Almeida, J. R. M., Aquino, R. C. M. P. and Monteiro, S. N. (2005). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing 37:14731479.Google Scholar
Endress, B. A., Gorchov, D. L. and Berry, E. J. (2006). Sustainability of a non-timber forest product: effects of alternative leaf harvest practices over 6 years on yield and demography of the palm Chamaedorea radicalis. Forest Ecology Management 234:181191.CrossRefGoogle Scholar
Endress, B. A., Gorchov, D. L., Peterson, M. B. and Serrano, E. P. (2004). Harvest of the Chamaedorea radicalis, its effects on leaf production, and implications for sustainable management. Conservation Biology 18:822830.Google Scholar
Eyles, A., Smith, D., Pinkard, E. A., Smith, I., Corkrey, R., Elms, S., Beadle, C., Mohammed, C. and Whitehead, D. (2011). Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation. Tree Physiology 31:593603.Google Scholar
Flores, C. F. and Ashton, P. M. S. (2000). Harvesting impact and economic value of Geonoma deversa, Arecaceae, an understory palm used for roof thatching in the Peruvian Amazon. Economic Botany 54:267277.CrossRefGoogle Scholar
Gomes, F. P., Oliva, M. A., Mielke, M. S., Almeida, A.-A. F. and Leite, H. G. (2006). Photosynthetic irradiance-response in leaves of dwarf coconut palm (Cocos nucifera L. ‘nana’, Arecaceae): comparison of three models. Scientia Horticulturae 109:101105.Google Scholar
Gomes, F. P., Oliva, M. A., Mielke, M. S., Almeida, A.-A. F., de, Leite, H. G. and Aquino, L. A. (2008). Photosynthetic limitations in leaves of young Brazilian green dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environmental and Experimental Botany 62:195204.Google Scholar
Heichel, G. H. and Turner, N. C. (1983). CO2 assimilation of primary and regrowth foliage of red maple (Acer rubrum, L.) and red oak (Quercus rubra L.): responses to defoliation. Oecologia 57:1419.CrossRefGoogle ScholarPubMed
Iqbal, N., Masood, A. and Khan, N. A. (2012). Analyzing the significance of defoliation in growth, photosynthetic compensation and source–sink relations. Photosynthetica 50:161170.CrossRefGoogle Scholar
Iqbal, R. M., Rao, A. R., Rasul, E. and Wahid, A. (1997). Mathematical models and response functions in photosynthesis: an exponential model. In Handbook of Photosynthesis, 803810 (Ed Pessarakli, M.). New York: Marcel Dekker.Google Scholar
Legros, S., Mialet-Serra, I., Clement-Vidal, A., Caliman, J. P., Siregar, F. A., Fabre, D. and Dingkuhn, M. (2009). Role of transitory carbon reserves during adjustment to climate variability and source–sink imbalances in oil palm (Elaeis guineensis). Tree Physiology 29:11991211.Google Scholar
Lopez-Toledo, L., Anten, N. P. R., Endress, B. A., Ackerly, D. D. and Martínez-Ramos, M. (2012). Resilience to chronic defoliation in a dioecious understorey tropical rain forest palm. Journal of Ecology 100:12451256.Google Scholar
Lorenzi, H. (2004). Palmeiras Brasileiras e Exóticas Cultivadas. Nova Odessa, SP: Instituto Plantarum, 416 pp.Google Scholar
Magat, S. S., Canja, L. H. and Margate, R. Z. (1994). Response of coconut to increasing levels of leaf pruning and its implications on farm productivity. Coconut Research and Development Journal 10:1632.Google Scholar
Martínez-Ballesté, A., Martorell, C., Martínez-Ramos, M. and Caballero, K. (2005). Applying retrospective demographic models to assess sustainable use: the Maya management of xa'an palms. Ecology and Society 10:17. Available from: http://www.ecologyandsociety.org/vol10/iss2/art17/.CrossRefGoogle Scholar
Martínez-Ramos, M., Anten, N. P. R. and Ackerly, D. D. (2009). Defoliation and ENSO effects on vital rates of an understorey tropical rain forest palm. Journal of Ecology 97:10501061.Google Scholar
Melo, J. R. V., Souza, J., Nakagawa, J., Silva, L. A. M. and Mori, E. S. (2000) Perspectiva da produção de sementes de piaçava (Attalea funifera Mart.) em áreas litorâneas do Estado da Bahia. Resumos técnicos. Rio de Janeiro: Instituto Ambiental Biosfera, 157–159.Google Scholar
Mendoza, A., Piñero, D. and Sarukhán, J. (1987). Effects of experimental defoliation on growth, reproduction and survival of Astrocaryum mexicanum. Journal of Ecology 75:545554.Google Scholar
Mialet-Serra, I., Clement-Vidal, A., Roupsard, O., Jourdan, C. and Dingkuhn, M. (2008). Whole-plant adjustments in coconut (Cocos nucifera) in response to sink–source imbalance. Tree Physiology 28:11991209.CrossRefGoogle ScholarPubMed
Monteiro, S. N. (2009). Properties and structure of Attalea funifera piassava fibers for composite reinforcement – A critical discussion. Journal of Natural Fibers 6:191203.Google Scholar
Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S. and Nascimento, D. C. O. (2009). Natural fiber polymer matrix composites: cheaper, tougher and environmentally friendly. Journal of the Minerals, Metals and Materials Society 61:1722.CrossRefGoogle Scholar
Navarro, J. A., Galeano, G. and Bernal, R. (2011). Impact of leaf harvest on populations of Lepidocaryum tenue, an Amazonian understory palm used for thatching. Tropical Conservation Science 4:2538.Google Scholar
Nomura, E. S., Lima, J. D., Fuzitani, E. J., Modenese-Gorla da Silva, S. H., Garcia, V. A. and Tombolato, A. F. C. (2011). Crescimento e produção de antúrio submetido a diferentes intensidades de desfolha. Ciência Rural 41:602607.CrossRefGoogle Scholar
Oliveira, P. S., Oliveira, A. R. A. and Gomes, F. P. (2008). Estimativa da área foliar em piaçaveiras (Attalea funifera Mart.) adultas sob condições de sombra e sol pleno. In XIV Seminário de Iniciação Científica: Pesquisa e Sociedade, 2008, 111 pp. Ilhéus, BA: Anais.Google Scholar
Oyama, K. and Mendoza, A. (1990). Effects of defoliation on growths, reproduction and survivor of a neotropical dioecious palm, Chamaedorea tepejilole. Biotropica 22:119123.CrossRefGoogle Scholar
Rosenfeld, E. (2009). Effects of pruning on the health of palms. Arboriculture & Urban Forestry 35:294299.CrossRefGoogle Scholar
Tomlinson, P. B. (1961). Anatomy of Monocotyledons, Vol. 2: Palmae. Oxford: Oxford University Press.Google Scholar
Tomlinson, P. B. (2006). The uniqueness of palms. Botanical Journal of the Linnean Society 151:514.Google Scholar
Vinha, S. G. and Silva, L. A. M. (1998). A piaçaveira da Bahia, 48 pp. Ilhéus, BA: Editus.Google Scholar
Zuidema, P. A. and Werger, M. J. A. (2000). Impact of artificial defoliation on ramet and genet demography in a neotropical understorey palm. In Demography of Exploited Tree Species in the Bolivian Amazon, 109131 (Ed Zuidema, P. A.). Bolivia and the Netherlands: Programa Manejo de Bosques de la Amazonia Boliviana and Universiteit Utrecht.Google Scholar