Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:03:12.676Z Has data issue: false hasContentIssue false

PARTICIPATORY EVALUATION OF IMPROVED GRASSES AND FORAGE LEGUMES FOR SMALLHOLDER LIVESTOCK PRODUCTION IN CENTRAL AMERICA

Published online by Cambridge University Press:  23 October 2018

EDWIN GARCIA
Affiliation:
International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
PABLO SILES
Affiliation:
International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
LISA EASH
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, 80523, USA
REIN VAN DER HOEK
Affiliation:
International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Apartado Aéreo 6713, Cali, Colombia
SEAN P. KEARNEY
Affiliation:
Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
SEAN M. SMUKLER
Affiliation:
Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
STEVEN J. FONTE*
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, 80523, USA
*
Corresponding author. Email: [email protected]

Summary

Smallholder livestock systems in Central America are typically based on pastures with traditional grasses and associated management practices, such as pasture burning and extensive grazing. With the rise of the global population and a corresponding increase in demand for meat and milk production, research efforts have focused on the development of improved grasses and the incorporation of legume species that can increase productivity and sustainability of Central American livestock systems. However, farmer adoption remains very limited, in part due to the lack of site-specific evaluation and recommendations by local institutions. Using a multi-site participatory approach, this study examined the potential of five improved grasses and five species of forage legumes as alternatives to the broadly disseminated grass Hyparrhenia rufa (cv. Jaragua) in pasture-based cattle systems in western Honduras and northern El Salvador. Improved grasses (four Brachiaria sp. and Megathyrsus maximus) produced significantly more biomass than H. rufa; also four of the five legume varieties evaluated (Canavalia ensiformis, Canavalia brasiliensis, Vigna unguiculata, and Vigna radiata) demonstrated high adaptability to diverse environmental conditions across sites. Farmer participatory evaluation offers a valuable means to assess performance of forages and will likely contribute to their improved utilization. Future research is needed on more refined management recommendations, pasture system design, costs and environmental benefits associated with the adoption of these forages in local livestock production systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argel, M., Miles, J. W., Guiot García, J. and Lascano, C. (2005). Cultivar Mulato (Brachiaria Híbrido CIAT 36061): Gramínea de Alta Producción y Calidad Forrajera Para Los Trópicos. Cali, Colombia: International Center for Tropical Agriculture (CIAT).Google Scholar
Argel, P. J., Miles, J. W., Guiot García, J. D., Cuadrado Capella, H. and Lascano, C. E. (2007). Cultivar Mulato II (Brachiaria hybrid CIAT 36087): A High-Quality Forage Grass, Resistant to Spittlebugs and Adapted to Well-Drained, Acid Tropical Soils. Cali, Colombia: International Center for Tropical Agriculture (CIAT).Google Scholar
Cardoso, J. A., De La Cruz Jiménez, J. and Rao, I. M. (2014). Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB Plants 6:plu017. DOI: https://doi.org/10.1093/aobpla/plu017.Google Scholar
Costa, N. D. L., Soares, J., Townsend, C., Pereira, R. D. A., Magalhães, J. and Rodrigues, B. (2013). Effect of cutting regimes on forage yield and chemical composition of pigeon pea (Cajanus cajan) in Porto Velho, Rondônia. PUBVET, 7 (2). ISSN: Google Scholar
Douxchamps, S., Frossard, E., Uehlinger, N., Rao, I., Van Der Hoek, R., Mena, M., Schmidt, A. and Oberson, A. (2012). Identifying factors limiting legume biomass production in a heterogeneous on-farm environment. Journal of Agricultural Science 150 (6):675690.Google Scholar
Douxchamps, S., Rao, I. M., Peters, M., Van Der Hoek, R., Schmidt, A., Martens, S., Polania, J., Mena, M., Binder, C. and Schöll, R. (2014). Farm-scale tradeoffs between legume use as forage versus green manure: The case of Canavalia brasiliensis. Agroecology and Sustainable Food Systems 38:2545. DOI: https://doi.org/10.1080/21683565.2013.828667.Google Scholar
Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J. and Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236238. DOI: 10.1038/371236a0.Google Scholar
Fonte, S. J., Barrios, E. and Six, J. (2010) Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agroecosystems of Honduras. Pedobiologia 53:327335. DOI: 10.1016/j.pedobi.2010.03.002.Google Scholar
Hare, M. D., Phengphet, S., Songsiri, T. and Sutin, N. (2015). Effect of nitrogen on yield and quality of Panicum maximum cvv. Mombasa and Tanzania in Northeast Thailand. Tropical Grasslands 3:2733. DOI: 10.17138/TGFT(3)27-33.Google Scholar
Hernández Romero, L. A. (2007). Selection of Tropical Forages: Development and Implementation of a Participatory Procedure and Main Results from Honduras, Nicaragua and Costa Rica, 108. Reihe Kommunikation und Beratung 74, Weikersheim, Germany: Margraf Publishers.Google Scholar
Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K. and Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences 110:2088820893. DOI: 10.1073/pnas.1308149110.Google Scholar
Horne, P. M. and Stür, W. W. (1997). Current and future opportunities for introduced forages in smallholder farming systems of south-east Asia. Tropical Grasslands 31:359363.Google Scholar
Katunga, M., Muhigwa, J., Kashala, K., Ipungu, L., Nyongombe, N., Maass, B. and Peters, M. (2014). Testing agro-ecological adaptation of improved herbaceous forage legumes in South-Kivu, DR Congo. American Journal of Plant Sciences 5:13841393. DOI: 10.4236/ajps.2014.59153.Google Scholar
Kearney, S. P., Coops, N. C., Chan, K. M. A., Fonte, S. J., Siles, P. and Smukler, S. M. (2017). Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador. Journal of Environmental Management 202:287298. DOI: 10.1016/j.jenvman.2017.07.039.Google Scholar
Kebede, G., Assefa, G., Feyissa, F. and Mengistu, A. (2016). Forage legumes in crop-livestock mixed farming systems-A Review. International Journal of Livestock Research 6:118. DOI: 10.5455/ijlr.20160317124049.Google Scholar
Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M. P., Loaiza, S., Rodríguez, E., Sanabria, C., Velásquez, E. and Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of eastern Colombia. Agriculture, Ecosystems, and Environment 185:106117. DOI: https://doi.org/10.1016/j.agee.2013.12.020.Google Scholar
Lemaire, G., Alan, F., Carvalho, D. F. Y. P. C. and Benoît, D. (2014). Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production & environmental quality. Agriculture, Ecosystems and Environment 190:48. DOI: https://doi.org/10.1016/j.agee.2013.08.009.Google Scholar
Lima-Orozco, R., Van Daele, I., Álvarez-Hernández, U. and Fievez, V. (2016). Combination of the underutilised legumes Canavalia ensiformis (L.) DC and Mucuna pruriens, with sorghum: Integrated assessment of their potential as conserved ruminant feed. Cuban Journal of Agricultural Science 50:99103.Google Scholar
Miles, J. W., do Valle, C. B., Rao, I. M. and Euclides, V. P. B. (2004). Brachiaria grasses. In Warm-Season (C4) Grasses, 745783 (Eds Moser, L., Burson, B. and Sollenberger, L. E.). Madison, WI, USA: ASA-CSSASSSA. DOI: 10.2134/agronmonogr45.c22.Google Scholar
Montenegro, J., Barrantes, E. and Dilorenzo, N. (2016). Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livestock Science 193:4550. DOI: https://doi.org/10.1016/j.livsci.2016.09.008.Google Scholar
Mutimura, M. and Everson, T. (2012). On-farm evaluation of improved Brachiaria grasses in low rainfall and aluminium toxicity prone areas of Rwanda. International Journal of Biodiversity and Conservation 4:137154.Google Scholar
Paul, B. K., Muhimuzi, F. L., Bacigale, S. B., Wimba, B. M. M., Chiuri, W. L., Amzati, G. S. and Maass, B. L. (2016). Towards an assessment of on-farm niches for improved forages in Sud-Kivu, DR Congo. Journal of Agriculture and Rural Development in the Tropics and Subtropics 117:243254.Google Scholar
Peri, P. L., Dube, F. and Varella, A. C. (2016). Opportunities and challenges for silvopastoral systems in the subtropical and temperate zones of South America. In Silvopastoral Systems in Southern South America, 257270 (Eds Peri, P. L., Dube, F. and Varella, A.). Cham: Springer International Publishing.Google Scholar
Peters, M., Franco, L. H., Schmidt, A. and Hincapié, B. (2010). Especies Forrajeras Multipropósito: Opciones para productores del Trópico Americano, 212. Cali, CO: Centro Internacional de Agricultura Tropical (CIAT). Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ); Deutsche Gesellschaft für Technische Zusammenarbeit (GIZ), vii, (Publicación CIAT no. 374).Google Scholar
Peters, M., Lascano, C. E., Roothaert, R. and De Haan, N. C. (2003). Linking research on forage germplasm to farmers: The pathway to increased adoption-a CIAT, ILRI and IITA perspective. Field Crops Research 84:179188. DOI: https://doi.org/10.1016/S0378-4290(03)00149-7.Google Scholar
Pizarro, E. A., Hare, M. D., Mutimura, M. and Changjun, B. (2013). Brachiaria hybrids: Potential, forage use and seed yield. Tropical Grasslands 1:3135. DOI: https://doi.org/10.17138/tgft(1)31-35.Google Scholar
Pretty, J. N. (1995). Participatory learning for sustainable agriculture. World development 23 (8):12471263. DOI: https://doi.org/10.1016/0305-750X(95)00046-F.Google Scholar
Rao, I., Peters, M., Castro, A., Schultze-Kraft, R., White, D., Fisher, M., Miles, J., Lascano, C., Blümmel, M., Bungenstab, D., Tapasco, J., Hyman, G., Bolliger, A., Paul, B., Hoek, R. V. D., Maass, B., Tiemann, T., Cuchillo, M., Douxchamps, S., Villanueva, C., Rincón, Á., Ayarza, M., Rosenstock, T., Subbarao, G., Arango, J., Cardoso, J., Worthington, M., Chirinda, N., Notenbaert, A., Jenet, A., Schmidt, A., Vivas, N., Lefroy, R., Fahrney, K., Guimarães, E., Tohme, J., Cook, S., Herrero, M., Chocón, M., Searchinger, T. and Rudel, A. T. (2015). LivestockPlus: The Sustainable Intensification of Forage-Based Agricultural Systems to Improve Livelihoods and Ecosystem Services in the Tropics, 40. Cali, CO: International Center for Tropical Agriculture (CIAT), (CIAT Publication No. 407).Google Scholar
Reiber, C., Schultze-Kraft, R., Peters, M., Lentes, P. and Hoffman, V. (2010) Promotion and adoption of silage technologies in drought constrained areas of Honduras. Tropical Grasslands, 44:231245.Google Scholar
Rouquette, F. (2015). Grazing systems research and impact of stocking strategies on pasture–animal production efficiencies. Crop Science 55:25132530. DOI: 10.2135/cropsci2015.01.0062.Google Scholar
Rusinamhodzi, L., Makoko, B. and Sariah, J. (2017) Ratooning pigeonpea in maize-pigeonpea intercropping: Productivity and seed cost reduction in eastern Tanzania. Field Crops Research 203:2432. DOI: https://doi.org/10.1016/j.fcr.2016.12.001.Google Scholar
Shriar, A. J. (2007). In search of sustainable land use and food security in the arid hillside regions of Central America: Putting the horse before the cart. Human Ecology 35:275287. DOI: 10.1007/s10745-006-9088-z.Google Scholar
Smukler, S., Barillas, R., Siles, P., Garcia, E., Kearney, S. and Fonte, S. J. (2017). Final report: USAID agroforestry for biodiversity and ecosystem services project. San Salvador: This publication was produced for review by the United States Agency for International Development. It was prepared by the team the Earth Institute at Columbia University and CIAT, Cooperative Agreement No. AID-519-A-12-00002.Google Scholar
Steinfeld, H., Wassenaar, T. and Jutzi, S. (2006). Livestock production systems in developing countries: Status, drivers, trends. Revue Scientifique et Technique 25 (2):505516.Google Scholar
Stür, W., Horne, P., Gabunada, F., Phengsavanh, P. and Kerridge, P. C. (2002). Forage options for smallholder crop–animal systems in Southeast Asia: Working with farmers to find solutions. Agricultural Systems 71:7598. DOI: https://doi.org/10.1016/S0308-521X(01)00037-3.Google Scholar
Tilman, D., Balzer, C., Hill, J. and Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108 (50):2026020264. DOI: 10.1073/pnas.1116437108.Google Scholar
Supplementary material: Image

Garcia et al. supplementary material

Figure S1

Download Garcia et al. supplementary material(Image)
Image 23 MB