Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T05:06:17.412Z Has data issue: false hasContentIssue false

Maize relay intercropping with fodder crops for small-scale farmers in central Brazil

Published online by Cambridge University Press:  17 July 2020

Alpha Bocar Baldé
Affiliation:
ISRA, Centre National de Recherches Agronomiques, PO Box 53, Bambey, Senegal SODAGRI, Boulevard Djily Mbaye X Rue Macodou Ndiaye Immeuble Fahd 9e Etage, PO 222, Dakar, Senegal
Eric Scopel
Affiliation:
Agroecology and Sustainable Intensification of Annual Crops, University of Montpellier, CIRAD, Avenue Agropolis, F-34398 Montpellier, France
François Affholder
Affiliation:
Agroecology and Sustainable Intensification of Annual Crops, University of Montpellier, CIRAD, Avenue Agropolis, F-34398 Montpellier, France
Fernando Antonio Macena Da Silva
Affiliation:
Embrapa Cerrados, PO Box 8233, 73301-970Planaltina, DF, Brazil
Jacques Wery
Affiliation:
ICARDA, 2 Port Said, Maadi, Cairo, Egypt
Marc Corbeels*
Affiliation:
Agroecology and Sustainable Intensification of Annual Crops, University of Montpellier, CIRAD, Avenue Agropolis, F-34398 Montpellier, France CIMMYT, Sustainable Intensification Program, P.O. Box 1041-00621, Nairobi, Kenya
*
*Corresponding author. Email: [email protected]

Abstract

Relay intercropping of maize with fodder crops is a promising option for sustainable intensification of dairy small-scale farms in the Cerrado of Brazil. Twenty-six intercropping trials were conducted on farmers’ fields with the following experimental treatments: sole maize crop cropping (MS), maize-Brachiaria intercropping (MB) and maize-pigeon pea intercropping (MP). The trials were managed by the farmers, i.e. choice of conventional tillage (CT) versus no-tillage (NT), sowing dates, fertilization and weed control. Maize grain yield varied strongly across the farmer fields, from 100 to 5900 kg ha−1 in the MS treatment, 500 to 6900 kg ha−1 in MP and 300 to 5500 kg ha−1 in MB. Intercropping did not significantly affect maize grain yields under NT, but yields were reduced under CT in one out of two seasons. Maize yields in the intercropped systems were also higher under NT than CT. Total biomass productivity was significantly higher in the maize-fodder than in the sole maize system. An increased interval between sowing of maize and fodder crop significantly reduced the fodder crop biomass. Relay intercropping, especially in combination with NT, is a promising option if crop calendars and fertilization are properly managed by farmers to reduce interspecific competition between the maize and fodder crop.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adámoli, J., Macedo, J., Azevedo, L.G. and Madeira Netto, J. (1986). Caracterização da região dos Cerrados. In Goedert, W.J. (ed), Solos dos Cerrados: technologias e estratégias de manejo. Brasilia: Embrapa-CPAC, 3374.Google Scholar
Affholder, F., Scopel, E., Madeira Neto, J. and Capillon, A. (2003). Diagnosis of the productivity gap using a crop model. Methodology and case study of small-scale maize production in central Brazil. Agronomie 23, 305325.CrossRefGoogle Scholar
Alary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J.H., da Silva, F.A.M. and Scopel, E. (2016). Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modeling. Agricultural Systems 144, 3345.CrossRefGoogle Scholar
Amossé, C., Jeuffroy, M., Mary, B. and David, C. (2014). Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems. Nutrient Cycling in Agroecosystems 98, 114.CrossRefGoogle Scholar
Baldé, A.B., Scopel, E., Affholder, F., Corbeels, M., da Silva, F.A.M., Xavier, J.H.V. and Wery, J. (2011). Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research 124, 240251.CrossRefGoogle Scholar
Bilalis, D., Papastylianou, P., Konstantas, A., Patsiali, S., Karkanis, A. and Efthimiadou, A. (2010). Weed-suppressive effects of maize–legume intercropping in organic farming. International Journal of Pest Management 56, 173181.CrossRefGoogle Scholar
Blaise, D., Bonde, A.N. and Chaudhary, R.S. (2005). Nutrient uptake and balance of cotton + pigeonpea strip intercropping on rainfed Vertisols of central India. Nutrient Cycling in Agroecosystems 73, 135145.CrossRefGoogle Scholar
Bolliger, A., Magid, J., Amado, J.C.T., Neto, F.S., dos Santos Ribeiro, M.D., Calegari, A., Ralisch, R. and de Neergaard, A. (2006). Taking stock of the Brazilian ‘zero-till revolution’: a review of landmark research and farmers’ practice. Advances in Agronomy 91, 47110.CrossRefGoogle Scholar
Borghi, E., Crusciol, C.A.C., Nascente, A.S., Mateus, G.P., Martins, P.O. and Costa, C. (2012). Effects of row spacing and intercrop on maize grain yield and forage production of palisade grass. Crop and Pasture Science 63, 11061113.CrossRefGoogle Scholar
Brooker, R.W., Bennett, A.E., Cong, W.F., Daniell, T.J., George, T.S., Hallett, P.D., Hawes, C., Iannetta, P.P., Jones, H.G., Karley, A.J., Li, L., McKenzie, B.M., Pakeman, R.J., Paterson, E., Schöb, C., Shen, J., Squire, G., Watson, C.A., Zhang, C., Zhang, F., Zhang, J. and White, P.J. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206, 107117.CrossRefGoogle ScholarPubMed
Carof, M., de Tourdonnet, S., Saulas, P., Le Floch, D. and Roger-Estrade, J. (2007). Undersowing wheat with different living mulches in a no-till system. II. Competition for light and nitrogen. Agronomy for Sustainable Development 27, 357365.CrossRefGoogle Scholar
Carvalho, J., Cerri, C.E.P., Feigl, B.J., Piccolo, M.D.C., Herpin, U. and Cerri, C. C. (2009). Conversion of Cerrado into agricultural land in the south-western Amazon: carbon stocks and soil fertility. Scientia Agricola 66, 233241.CrossRefGoogle Scholar
Chauhan, B.S., Singh, R.G. and Mahajan, G. (2012). Ecology and management of weeds under conservation agriculture: a review. Crop Protection 38, 5765.CrossRefGoogle Scholar
Corbeels, M., Marchão, R.L., Neto, M.S., Ferreira, E.G., Madari, B.E., Scopel, E. and Brito, O.R. (2016). Evidence of limited carbon sequestration in soils under no-tillage systems in the cerrado of brazil. Scientific Reports 6: Article number 21450.Google Scholar
Coser, T.R., Ramos, M.L.G., Célio De Figueiredo, C., Urquiaga, S., Moreira De Carvalho, A., Barros, F.V. and Mendonça, M.T. (2016). Nitrogen uptake efficiency of maize in monoculture and intercropped with Brachiaria humidicola and Panicum maximum in a dystrophic red-yellow latosol of the Brazilian Cerrado. Crop and Pasture Science 67, 4754.CrossRefGoogle Scholar
Crusciol, C.A.C., Marques, R.R., Filho, A.C.A.C., Soratto, R.P., Costa, C.H.M., Neto, J.F., Castro, G.S.A., Pariz, C.M. and de Castilhos, A.M. (2016). Annual crop rotation of tropical pastures with no-till soil as affected by lime surface application. European Journal of Agronomy 80, 88104.CrossRefGoogle Scholar
Da Silva, F.A.M., Naudin, K., Corbeels, M., Scopel, E. and Affholder, F. (2019). Impact of conservation agriculture on the agronomic and environmental performances of maize cropping under contrasting climatic conditions of the Brazilian Cerrado. Field Crops Research 230, 7283.CrossRefGoogle Scholar
De Almeida, R.E.M., Favarin, J.L., Otto, R., Junior, C.P., de Oliveira, S.M., Tezotto, T. and Lago, B.C. (2017). Effects of nitrogen fertilization on yield components in a corn-palisadegrass intercropping system. Australian Journal of Crop Science 11, 352359.CrossRefGoogle Scholar
De Santana do Carmo, C.A.F., de Araujo, W.S., de Campos Bernardi, A.C. and Saldanha, M.F.C. (2000). Metodos de analise de tecidos vegetais utilizados na Embrapa Solos. Embrapa Solos – Circular Técnica 6, Embrapa Solos, Rio de Janeiro, p. 41.Google Scholar
Gastal, M.L., Xavier, J.H.V., Zoby, J.L.F., de Rocha, F.E.C., da Silva, F.A.M., de Fatima dos Santos Ribeiro, M. and Couo, P.H.M. (2003). Projeto Unaí: diagnóstico rápido e dialogado de três assentamentos de reforma agrária. Boletim de Pesquisa e Desenvolvimento 118, Embrapa Cerrados, Planaltina, p. 74.Google Scholar
Ghosh, P.K., Tripathi, A.K., Bandyopadhyay, K.K. and Manna, M.C. (2009). Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping systems. European Journal of Agronomy 31, 4350.CrossRefGoogle Scholar
Green, V.S., Stott, D.E., Cruz, J.C. and Curi, N. (2007). Tillage impacts on soil biological activity and aggregation in a Brazilian Cerrado Oxisol. Soil and Tillage Research 92, 114121.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Ambus, P. and Jensen, E.S. (2001). Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Research 70, 101109.CrossRefGoogle Scholar
Hauggaard-Nielsen, H., Ambus, P. and Jensen, E.S. (2003). The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems 65, 289300.CrossRefGoogle Scholar
Jensen, E.S. (1996). Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant and Soil 182, 2538.CrossRefGoogle Scholar
Kermah, M., Franke, A.C., Adjei-Nsiah, S., Ahiabor, B.D.K., Abaidoo, R.C. and Giller, K.E. (2017). Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research 213, 3850.CrossRefGoogle ScholarPubMed
Liebman, M. and Dyck, E. (1993). Crop rotation and intercropping strategies for weed management. Ecological Applications 3, 92122.CrossRefGoogle ScholarPubMed
Maltas, A., Corbeels, M., Scopel, E., Wery, J. and da Silva, F.A.M. (2009). Cover crop and nitrogen effects on maize productivity in no-tillage systems of the Brazilian Cerrados. Agronomy Journal 101, 10361046.CrossRefGoogle Scholar
Nakamoto, T., Yamagishi, J. and Miura, F. (2006). Effect of reduced tillage on weeds and soil organisms in winter wheat and summer maize cropping on Humic Andosols in Central Japan. Soil and Tillage Research 85, 94106.CrossRefGoogle Scholar
Naudin, K., Bruelle, G., Salgado, P., Penot, E., Scopel, E., Lubbers, M., de Ridder, N. and Giller, K.E. (2014). Trade-offs around the use of biomass for livestock feed and soil cover in dairy farms in the Alaotra lake region of Madagascar. Agricultural Systems 134, 3647.CrossRefGoogle Scholar
Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L. and Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. Agronomy for Sustainable Development 37, 26.CrossRefGoogle Scholar
Reatto, A., Correia, J.R. and Spera, S.T. (1998). Solos do bioma Cerrados. In: Matiko, Sano and Pedrosa de Almeida, S. (eds), Cerrado, Ambiente e flora. Planaltina: Embrapa-CPAC, 4788.Google Scholar
Scopel, E., da Silva, F.A.M., Corbeels, M., Affholder, F. and Maraux, F. (2004). Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383395.CrossRefGoogle Scholar
Seran, T.H. and Brintha, I. (2010). Review on maize based intercropping. Journal of Agronomy 9, 135145.Google Scholar
Shili-Touzi, I., de Tourdonnet, S., Launay, M. and Dore, T. (2010). Does intercropping winter wheat (Triticuma estivum) with red fescue (Festucarubra) as a cover crop improve agronomic and environmental performance? A modeling approach. Field Crops Research 116, 218229.CrossRefGoogle Scholar
Vrignon-Brenas, S., Celette, F., Piquet-Pissaloux, A., Jeuffroy, M.H. and David, C. (2016). Early assessment of ecological services provided by forage legumes in relay intercropping. European Journal of Agronomy 75, 8998.CrossRefGoogle Scholar
Wantzen, K.M., Siqueira, A., da Cunha, C.N. and de Sá, M.F.P. (2006). Stream-valley systems of the Brazilian Cerrado: impact assessment and conservation scheme. Aquatic Conservation: Marine and Freshwater Ecosystems 16, 713732.CrossRefGoogle Scholar
Willey, R.W. (1979). Intercropping: its importance and research needs. 1. Competition and yield advantages. Field Crop Abstracts 32, 110.Google Scholar
Yamada, T. (2005). The Cerrado of Brazil: a success story of production on acid soils. Soil Science and Plant Nutrition 51, 617620.CrossRefGoogle Scholar
Zuazo, V.H.D. and Pleguezuelo, C.R.R. (2008). Soil-erosion and runoff prevention by plant covers: a review. Agronomy for Sustainable Development 28, 6586.CrossRefGoogle Scholar
Supplementary material: File

Baldé et al. supplementary material

Baldé et al. supplementary material

Download Baldé et al. supplementary material(File)
File 78.6 KB