Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T06:03:43.515Z Has data issue: false hasContentIssue false

A KNIFE-ROLLER EFFECTIVELY SUBSTITUTES SOIL PREPARATION BY PLOUGH-AND-HARROW IN LOWLAND PRODUCTION SYSTEMS

Published online by Cambridge University Press:  10 November 2017

G. THEISEN*
Affiliation:
Embrapa Clima Temperado, Pelotas, Brazil Wageningen University, Wageningen, the Netherlands
J. C. C. SILVA
Affiliation:
Embrapa Clima Temperado, Pelotas, Brazil
L. BASTIAANS
Affiliation:
Centre for Crop System Analysis, Wageningen University, the Netherlands
*
Corresponding author. Email: [email protected]

Summary

Cropping systems in the lowlands of temperate South America have been based on irrigated rice and beef-cattle production. Plough-and-harrow is still the most used method to prepare the soil after a season of irrigated rice, but it causes high soil disturbance and is time- and energy-demanding. To improve the sustainability of a rice–soybean rotation system, we studied an alternative method for soil preparation based on a heavy knife-roller. This method was evaluated during three cropping seasons and compared to the plough-and-harrow, applied after the harvest of irrigated rice in a flat hydromorphic soil in south Brazil. In the subsequent summer, soybean was seeded using a no-tillage seeder. Observations on soybean establishment and grain yield demonstrated that the alternative method performed as well as the plough-based system. Benefits of the roller-based method were a 50% reduction in energy consumption for soil preparation, corresponding to a 22% increase in overall energy use-efficiency of soybean production. Labour time and greenhouse gas emissions for soil preparation were reduced with 29 and 55%, respectively. Next to these savings, the roller-based method can also be performed shortly after rice harvest, creating better opportunities for cover crops or pastures in between rice and soybean. In conclusion, the equivalent agronomic and superior sustainability performance makes the knife-roller method an appealing alternative for seedbed preparation after irrigated rice in lowland production systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The research was carried out at the Lowlands Experimental Station of Embrapa, Pelotas, RS, Brazil.

References

REFERENCES

Alberto, M. C. R. et al. (2015). Straw incorporated after mechanized harvesting of irrigated rice affects net emissions of CH4 and CO2 based on eddy covariance measurements. Field Crops Research 184:162175. doi:10.1016/j.fcr.2015.10.004.Google Scholar
Assmann, J. M. et al. (2015). Carbon and nitrogen cycling in an integrated soybean-beef cattle production system under different grazing intensities. Pesquisa Agropecuária Brasileira 50:967978. doi:10.1590/S0100-204X2015001000013.Google Scholar
Bennetzen, E. H., Smith, P. and Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology 22:763781. doi:10.1111/gcb.13120.Google Scholar
Blandford, D. and Josling, T. (2009) Greenhouse gas reduction policies and agriculture: implications for production incentives and international trade disciplines. In ICTSD–IPC Platform on Climate Change, Agriculture and Trade. International Centre for Trade and Sustainable Development (Geneva) and International Food & Agricultural Trade Policy Council (Washington DC), Geneva. doi:10.7215/ag_ib_20090801.Google Scholar
Brasil (2012). Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: plano ABC (Agricultura de Baixa Emissão de Carbono). Vol. 1. (ed Ministério Da Agricultura Pecuária E Abastecimento), 173p. MAPA/ACS, Brasília, Brasil.Google Scholar
Britto, F. P., Barletta, R. and Mendonça, M. (2006). Regionalização sazonal e mensal da precipitação pluvial máxima no estado do Rio Grande do Sul. Revista Brasileira de Climatologia 02:3551. doi:10.5380/abclima.v3i0.25425.Google Scholar
Carvalho, P. T. D. (2012). Balanço de emissões de gases de efeito estufa de biodiesel produzido a partir de soja e dendê no Brasil. Master, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
De Moraes, A., Carvalho, P. C. D. F., Anghinoni, I., Lustosa, S. B. C., Costa, Sevgda and Kunrath, T. R. (2014). Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy 57:49.Google Scholar
Eriksson, M. and Ahlgren, S. (2013). LCAs for petrol and diesel – a literature review. 36. Swedish University of Agricultural Sciences, Uppsala.Google Scholar
Ferreira, F. D. F., Neumann, P. S. and Hoffmann, R. (2014). Análise da matriz energética e econômica das culturas de arroz, soja e trigo em sistemas de produção tecnificados no Rio Grande do Sul. Ciencia Rural 44:380385. doi:10.1590/S0103-84782013005000157.Google Scholar
Fertilizers Europe (2014). Carbon footprint reference values: energy efficiency and greenhouse gas emissions in European mineral fertilizer production and use. 5. Fertilizers Europe, Brussels.Google Scholar
García, R., Pizarro, C., Lavín, A. G. and Bueno, J. L. (2014). Spanish biofuels heating value estimation. Part I: Ultimate analysis data. Fuel 117, Part B:11301138. doi:10.1016/j.fuel.2013.08.048.Google Scholar
Garrity, D. P., Gines, H. C. and No (1990). The development of rice-corn rotations in tropical lowland environments: a systems research approach. In Extension Bulletin – ASPAC, Food & Fertilizer Technology Center, Vol. 316, 24 p. IRRI, Manila, Philippines.Google Scholar
Hamzei, J. and Seyyedi, M. (2016). Energy use and input-output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil & Tillage Research 157:7382. doi:10.1016/j.still.2015.11.008.Google Scholar
Heichel, G. H. (1980). Assessing the fossil energy costs of propagating agricultural crops. In Handbook of Energy Utilization in Agriculture, 2733, Vol. 1. (Eds Pimentel, D.). Boca Raton, FL, USA: CRC Press.Google Scholar
IBGE (2016) Banco de Dados Agregados (Aggregated Database). Available at: http://www.sidra.ibge.gov.br/ (accessed 05 Jan 2017).Google Scholar
IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use., (eds. K Paustian, NH Ravindranath & AV Amstel). Hayama, Japan: Institute for Global Environmental Strategies.Google Scholar
IRGA (2014). Custo de produção de arroz irrigado médio ponderado no Rio Grande do Sul. Sistema de cultivo mínimo (semi direto). Estimativa da safra 2013/14. In: Custo de Produção de Arroz. (ed SDP Setorial), 55, Porto Alegre, Brazil: Instituto Rio Grandense do Arroz.Google Scholar
IRGA (2017) Services and informations – cropping seasons. Available at: http://www.irga.rs.gov.br/conteudo/4215/safras (accessed 05 Jan 2017).Google Scholar
Janssen, M. and Lennartz, B. (2007). Horizontal and vertical water and solute fluxes in paddy rice fields. Soil and Tillage Research 94:133141. doi:10.1016/j.still.2006.07.010.Google Scholar
Lima, A. C. R., Hoogmoed, W. B., Pauletto, E. A. and Pinto, L. F. S. (2009). Management systems in irrigated rice affect physical and chemical soil properties. Soil & Tillage Research 103:9297. doi:10.1016/j.still.2008.09.011.Google Scholar
Medeiros, L. F. S. (2011). Avaliação da energia contida nos principais sistemas agrícolas e industriais da região médio norte do Estado de Mato Grosso – 2010. Master Thesis Cuiabá, MT, Brazil: Universidade Federal de Mato Grosso.Google Scholar
Patzek, T. W. (2004). Thermodynamics of the corn-ethanol biofuel cycle. Critical Reviews in Plant Sciences 23:519567. doi:10.1080/07352680490886905.Google Scholar
Pimentel, D. (1992). Energy inputs in production agriculture. In Energy in Farm Production, 1329. Vol. 6. (Ed Fluck, R. C.), 1 edn, Amsterdam: Elsevier. doi:10.1016/B978-0-444-88681-1.50007-7.Google Scholar
Pimentel, D. (2003). Ethanol fuels: energy balance, economics, and environmental impacts are negative. Natural Resources Research 12:127134. doi: 10.1023/a:1024214812527.Google Scholar
Rocha, J. M. (2011). As Raízes da Crise da Metade Sul. Estudo da formação econômica do Rio Grande do Sul, (Ed. Unipampa, ), 1 edn. Jaguarão, RS, Brazil: Fundação Universidade Federal do Pampa.Google Scholar
SAS Institute (2016). The SAS system for Windows. Version 9.4. Cary, NC.Google Scholar
Saunders, C., Barber, A. and Taylor, G. (2006). Food Miles - Comparative Energy/Emissions Performance of New Zealand's Agriculture Industry, (Ed. University, A. L.). Lincoln, New Zealand: Lincoln University. Agribusiness and Economics Research Unit..Google Scholar
Silva, J. J. C., Theisen, G., Andres, A., Silva, J. L. S. and Idehara, S. J. (2012). Avaliação do uso do rolo-faca no preparo do solo pós-colheita do arroz irrigado em áreas da planície costeira do RS. In Documentos, 349, Vol. 1, 28 p. Pelotas, RS, Brazil: Embrapa Clima Temperado.Google Scholar
SOSBAI (2014). Arroz Irrigado: Recomendações Técnicas da Pesquisa Para o Sul do Brasil, (ed. Sosbai, ), 1 edn. Santa Maria, RS, Brazil: Sociedade Sul Brasileira de Arroz Irrigado.Google Scholar
Streck, E. V. et al., (2008) Solos do Rio Grande do Sul. 2a Ed. Porto Alegre, RS, Brazil: UFRGS, Departamento de Solos, Faculdade de Agronomia and EMATER/RS.Google Scholar
Tourino, M. C. C., De Rezende, P. M. and Salvador, N. (2002). Row spacing, plant density and intrarow plant spacing uniformity effect on soybean yield and agronomic characteristics. Pesquisa Agropecuária Brasileira 37:10711077. doi:10.1590/S0100-204X2002000800004.Google Scholar
Wuebker, E. F., Mullen, R. E. and Koehler, K. (2001). Flooding and temperature effects on soybean germination. Crop Science 41:18571861. doi:10.2135/cropsci2001.1857.Google Scholar