Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T08:05:37.194Z Has data issue: false hasContentIssue false

INTENSIVE PRODUCTION SYSTEMS OF FIG (Ficus carica L.) UNDER GREENHOUSE CONDITIONS

Published online by Cambridge University Press:  23 June 2016

VICTOR MANUEL MENDOZA-CASTILLO
Affiliation:
Departamento de Fitotecnia, Universidad Autónoma Chapingo, Km 38.5 Carretera México-Texcoco, Chapingo Texcoco, C. P. 56230, Estado de México, México
JUAN MANUEL VARGAS-CANALES*
Affiliation:
Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial, Universidad Autónoma Chapingo, Km 38.5 Carretera México-Texcoco, Chapingo Texcoco, C. P. 56230, Estado de México, México
GUILLERMO CALDERÓN-ZAVALA
Affiliation:
Recursos Genéticos y Productividad-Fruticultura, Colegio de Postgraduados, Km. 36.5 Carretera México-Texcoco. Montecillo Texcoco, C.P. 56230, Estado de México, México
MARÍA DEL CARMEN MENDOZA-CASTILLO
Affiliation:
Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Km. 36.5 Carretera México-Texcoco. Montecillo Texcoco, C.P. 56230, Estado de México, México
AMALIO SANTACRUZ-VARELA
Affiliation:
Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Km. 36.5 Carretera México-Texcoco. Montecillo Texcoco, C.P. 56230, Estado de México, México
*
§Corresponding author. Email: [email protected]

Summary

The worldwide cultivation of fig (Ficus carica L.) has achieved great economic importance, mainly, due to its important role as a food supplement. This situation has generated great interest in researching its methods of production, processing and conservation. The objective of this research was to evaluate six intensive production systems of fig in hydroponic and greenhouse conditions. The experimental phase started on November 15, 2010 and was completed in September 2011. Production systems were established by varying the number of productive stems between three and eight in each plant, with densities of 1.25 plants m−2. A completely experimental – randomized design was used with five replications, with a pot and a plant as an experimental unit. The results indicate that the highest yielding of fresh fruit was presented by eight productive stems (109.5 t ha−1), this one outperformed the seven productive stems (94.8 t ha−1) in 13.3% and six productive stems (78.6 t ha−1), at 26.8%. The handling of productive stems allowed an increase in the leaf area index, harvest index and fruit yielding. These results suggest that intensive production in hydroponic and greenhouse conditions of fig is an excellent alternative production, allowing to collect up to 20 times of fresh fruit yielding in relation to the plantations in the open field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Razik, M. S. and El-Darier, (1991). Functional adaptations of fig trees (Ficus carica L.) In agroecosystems of the western Mediterranean Desert of Egypt. Qatar University Science Journal 11:183199.Google Scholar
Aljane, F., Toumi, I. and Ferchichi, A. (2007). HPLC determination of sugars and atomic absorption analysis of mineral salts in fresh figs of Tunisian cultivars. African Journal of Biotechnology 6:599602.Google Scholar
Alvarenga, A. A., Fráguas, J. C. and da Silva, V. J. (2002). Fig crop (Ficus carica L.) in Lavras region, MG current situation and perspectives. Ciência e Agrotecnologia (Brazil) 26:643646.Google Scholar
Aref, H. L., Salah, K. B., Chaumont, J. P., Fekih, A., Aouni, M. and Said, K. (2010). In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex). Pakistan Journal of Pharmaceutical Sciences 23:53–8.Google Scholar
Bastida, A. (2008). Los Invernaderos en México. Universidad Autónoma Chapingo. Chapingo, México. 123 pp.Google Scholar
Botti, C., Franck, N., Prat, L., Ionnandis, D. and Morales, B. (2003). The effect of climatic conditions on fresh fig fruit yield, quality and type of crop. Acta Horticulturae 3744.Google Scholar
Çalişkan, O. and Polat, A. A. (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Scientia Horticulturae 128:473478. doi:10.1016/j.scienta.2011.02.023.Google Scholar
Castañeda-Miranda, R., Ventura-Ramos, E. Jr., Peniche-Vera, R. del R. and Herrera-Ruiz, G. (2007). Análisis y simulación del modelo físico de un invernadero bajo condiciones climáticas de la región central de México. Agrociencia 3:317335.Google Scholar
Cavatte, P. C., Rodríguez-López, N. F., Martins, S. C., Mattos, M. S., Sanglard, L. M. and DaMatta, F. M. (2012). Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. Journal of Experimental Botany 63:30713082. doi: 10.1093/jxb/ers027.Google Scholar
CuiHua, L., Min, Y., FuKuan, C., HongYing, L. and ChangGeng, D. (2003). The performance of Ziguo fig variety in Jiaxiang county. China Fruits 2:55.Google Scholar
Darjazi, B. B. (2011). Morphological and pomological characteristics of fig (Ficus carica L.) cultivars from Varamin, Iran. African Journal of Biotechnology 10:1909619105. doi: 10.5897/AJB11.2463 Google Scholar
de Souza, R. M. M. (2003). Fig culture techniques. Acta Horticulturae 605:99101. doi:10.17660/ActaHortic.2003.605.14.Google Scholar
FAOSTAT (Organización de las Naciones Unidas para la Agricultura y la Alimentación, estadísticas) (2013). Base de datos estadísticos de la FAO. http://faostat.fao.org/.Google Scholar
Gaaliche, B., Trad, M. and Mars, M. (2011). Effect of pollination intensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Scientia Horticulturae 130:737742. doi:10.1016/j.scienta.2011.08.032.Google Scholar
García-Ruiz, M. T., Mendoza-Castillo, V. M., Valadez-Moctezuma, E. and Muratalla-Lúa, A. (2013). Initial assessment of natural diversity in Mexican fig landraces. Genetics and Molecular Research 12:39313943. doi:10.4238/2013.September.23.12.Google Scholar
Gerber, H. J., Steyn, W. J. and Theron, K. I. (2010). The optimum one-year-old shoot length to optimize yield and fruit size of three fig (Ficus carica L.) cultivars. HortScience 45:13211326.CrossRefGoogle Scholar
González, Z., Rosal, A., Requejo, A. and Rodríguez, A. (2011). Production of pulp and energy using orange tree prunings. Bioresource Technology 102:93309334. doi:10.1016/j.biortech.2011.07.088.Google Scholar
Gozlekci, S. (2011). Pomological traits of fig (Ficus carica L) genotypes collected in the west Mediterranean region in Turkey. The Journal of Animal & Plant Sciences 21:646652.Google Scholar
Hosseini, S. E. and Wahid, M. A. (2013). Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 19:454462. doi:10.1016/j.rser.2012.11.008.Google Scholar
İrget, M. E., Aksoy, U., Okur, B., Ongun, A. R. and Tepecik, M. (2008). Effect of calcium based fertilization on dried fig (Ficus carica L. cv. Sarılop) yield and quality. Scientia Horticulturae 118:308313. doi:10.1016/j.scienta.2008.06.024.Google Scholar
Karadeniz, T. (2008). Clonal selection in Patlıcan cv. at black sea region of Turkey. Acta Horticulturae 798:135138. doi: 10.17660/ActaHortic.2008.798.17 Google Scholar
Leonel, S. and Tecchio, M. A. (2010). Pruning time and irrigation on the fig trees' roxo de valinhos', in the botucatu region, state of São Paulo, Brazil. Bragantia 69:571580. http://dx.doi.org/10.1590/S0006-87052010000300008.Google Scholar
Lianju, W., Weibin, J., Kai, M., Zhifeng, L. and Yelin, W. (2003). The production and research of fig (Ficus carica L.) in China. Acta Horticulturae 605:191196. doi: 10.17660/ActaHortic.2003.605.28.CrossRefGoogle Scholar
Lifei, Z. and Guondong, W. (2003). Experiment of growing fig variety in the sunny greenhouse. China Fruits 4:56.Google Scholar
Liu, F., Yang, Z., Zheng, X., Luo, S., Zhang, K. and Li, G. (2011). Nematicidal coumarin from Ficus carica L. Journal of Asia-Pacific Entomology 14:7981. doi:10.1016/j.aspen.2010.10.006.Google Scholar
Macías, R. M., Velásquez, V. M. A., Villa, C. M. M., Rivera, G. M. and Muñoz, V. A. (2014). Evaluación experimental en higuera para implementar poda inicial en altas densidades de plantación con macrotunel en la región lagunera. AGROFAZ 14:3338.Google Scholar
Melgarejo, P., Martínez, J. J., Hernández, F., Salazar, D. M. and Martínez, R. (2007). Preliminary results on fig soil-less culture. Scientia Horticulturae 111:255259. doi:10.1016/j.scienta.2006.10.032.Google Scholar
Monagheddu, M. and Chessa, I. (2002). Technological innovations to improve Italian production of dried figs. Rivista di Frutticoltura e di Ortofloricoltura 64:4346.Google Scholar
Moreno, R. A., Aguilar, D. J. and Luévano, G. A. (2011). Características de la agricultura protegida y su entorno en México. Revista Mexicana de Agronegocios 15:763774.Google Scholar
Nienow, A. A., Chaves, A., Lajús, C. R. and Calvete, E. O. (2006). Fig-growing under protecting environment, submited to different pruning times and number of branches. Revista Brasileira de Fruticultura 28:421424. doi:10.1590/S0100-29452006000300018.Google Scholar
Patil, V. V., Bhangale, S. C. and Patil, V. R. (2010). Studies on immunomodulatory activity of Ficus carica . International Journal of Pharmacy and Pharmaceutical Sciences 2:9799.Google Scholar
Puebla, M., Toribio, F. and Montes, P. (2001). Determination of fruit bearing pruning date and cutting intensity in “San Pedro” (Ficus carica L) type fig cultivars. Acta Horticulturae 605:147157. doi: 10.17660/ActaHortic.2003.605.23 Google Scholar
Saeed, M. A. and Sabir, A. W. (2005). Trace elements in the fruit of Ficus carica L. and their nutritional importance. Hamdard Medicus (Pakistan) 48:113117.Google Scholar
SAGARPA (Secretaría de Ganadería Agricultura Pesca y Alimentación) (2015). Boletín informativo. Comunicado de prensa Núm. 481/15. Available in: http://www.sagarpa.gob.mx/saladeprensa/2012/2015/julio/Documents/2015B481.PDF.Google Scholar
Sánchez, M. J., Melgarejo, P., Hernández, F. and Martínez, J. J. (2003). Chemical and morphological characterization of four fig tree cultivars (Ficus carica L.) grown under similar culture conditions. Acta Horticulturae 605:3336.Google Scholar
SAS Institute (2006). Base SAS 9.1.3 Procedures Guide, 2nd edn., Volumes 1, 2, 3, and 4. Cary, NC: SAS Institute Inc.Google Scholar
Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergma, M., Gottlieb, H. E., Altman, A., Kerem, Z. and Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry 54:77177723. doi:10.1021/jf060497h.Google Scholar
Sorgüven, E. and Özilgen, M. (2012). Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process. Energy 40:214225. doi:10.1016/j.energy.2012.02.003.CrossRefGoogle Scholar
Steiner, A. (1984). The Universal Nutrient Solution. Netherlands: ISOC.Google Scholar
Stover, E., Aradhya, M., Ferguson, L. and Crisosto, C. H. (2007). The fig: overview of an ancient fruit. HortScience 42:10831087.Google Scholar
Trichopoulou, A., Soukara, S. and Vasilopoulou, E. (2007). Traditional foods: a science and society perspective. Trends in Food Science & Technology 18:420427. doi:10.1016/j.tifs.2007.03.007 Google Scholar
Urrestarazu, G. M. (2004). Tratado de Cultivo sin Suelo. Mundi-Prensa, Madrid, España.Google Scholar
Vargas-Canales, J. M., Castillo-González, A. M., Pineda-Pineda, J., Ramírez-Arias, J. A. and Avitia-García, E. (2014). Extracción nutrimental de jitomate (Solanum lycopersicum L.) en mezclas de tezontle con aserrín nuevo y reciclado. Revista Chapingo Serie Horticultura 20:7188. doi: 10.5154/r.rchsh.2013.02.005.Google Scholar
Yamakura, T., Hosomi, A. and Hirayama, D. (2008). Effect of tree spacing on vegetative growth and reproduction in an early growth stage in two cultivars of Ficus carica L. Journal of the Japanese Society for Horticultural Science 77:716. doi: http://doi.org/10.2503/jjshs1.77.7 Google Scholar
Yang, J. and Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany 61:31773189. doi: 10.1093/jxb/erq112. Google Scholar