Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T19:39:34.147Z Has data issue: false hasContentIssue false

Inheritance of Grain Yield and Other Quantitative Traits in Maize

Published online by Cambridge University Press:  03 October 2008

B. S. Dhillon
Affiliation:
Cummings Laboratory, Indian Agricultural Research Institute, New Delhi 110012, India
Joginder Singh
Affiliation:
Cummings Laboratory, Indian Agricultural Research Institute, New Delhi 110012, India

Summary

Combining ability analysis was carried out on diallel crosses of 20 yellow maize varieties in four environments. General combining ability variance (σ2g) was of greater importance than specific combining ability (σ2s) in the inheritance of all traits except grain yield and ear length, where the reverse was true. Interaction components (σ2ge, σ2se) were greater than the respective main components (σ2g, σ2s) for grain yield. The study brought out the prominent role of genotype-environmental interactions. Heritability in the broad sense was very high for all traits except grain yield and grain moisture, and narrow sense heritability was also high for all traits except grain yield and ear length.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Comstock, R. E. & Moll, R. H. (1963). In Statistical Genetics and Plant Breeding (Ed. Hanson, W. D. and Robinson, H. F.). NAS-NRC 982, Washington.Google Scholar
Darrah, L. L. & Hallauer, A. R. (1972). Crop Sci. 12, 615.CrossRefGoogle Scholar
Dhillon, B. S., Singh, J. & Singh, D. (1976). Maydica 21 (in press).Google Scholar
Gamble, E. E. (1962). Can. J. Plant. Sci. 42, 628.CrossRefGoogle Scholar
Gardner, C. O. (1963). In Statistical Genetics and Plant Breeding, Can. J. Plant. Sci.Google Scholar
Griffing, B. (1956). Aust. J. Biol. Sci. 9, 463.CrossRefGoogle Scholar
Hallauer, A. R. & Sears, J. H. (1968). Crop Sci. 8, 448.CrossRefGoogle Scholar
Kalsy, H. S. & Sharma, D. (1970). Euphytica 19, 522.CrossRefGoogle Scholar
Lindsey, M. F., Lonnquist, J. H. & Gardner, C. O. (1962). Crop Sci. 2, 105.CrossRefGoogle Scholar
Lonnquist, J. H. & Gardner, C. O. (1961). Crop Sci. 1, 179.CrossRefGoogle Scholar
Matzinger, D. F., Sprague, G. F. & Cockerham, C. C. (1959). Agron. J. 51, 346.CrossRefGoogle Scholar
Mukherjee, B. K. & Dhawan, N. L. (1970). Jap. J. Breed. 20, 47.CrossRefGoogle Scholar
Rojas, B. A. & Sprague, G. F. (1952). Agron. J. 44, 462.CrossRefGoogle Scholar
Singh, B., Ramanujam, S. & Dhawan, N. L. (1971). Indian J. Genet. 31, 322.Google Scholar
Singh, D. (1973). Indian J. Genet. 33, 469.Google Scholar
Stuber, C. W., Williams, W. P. & Moll, R. H. (1973). Crop Sci. 13, 195.CrossRefGoogle Scholar
Wright, J. A., Hallauer, A. R., Penny, L. H. & Eberhart, S. A. (1971). Crop Sci. 11, 690.CrossRefGoogle Scholar