Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T08:02:50.408Z Has data issue: false hasContentIssue false

Growth of Soyabean (Glycine Max) and Mungbean (Vigna Radiata) in the Post-Monsoon Season after Upland Rice

Published online by Cambridge University Press:  03 April 2017

K. D. Shepherd
Affiliation:
Department of Soil Science , University of Reading , London RoadReading, Berks, England RG1 5AQ
P.J Gregory
Affiliation:
Department of Soil Science , University of Reading , London RoadReading, Berks, England RG1 5AQ
T. Woodhead
Affiliation:
International Rice Research Institute, PO Box 933, Manila, Philippines
R. K. Pandey
Affiliation:
International Rice Research Institute, PO Box 933, Manila, Philippines
E. C. Magbujos
Affiliation:
International Rice Research Institute, PO Box 933, Manila, Philippines

Summary

Shoot and root growth and soil water depletion were studied in mungbean and soyabean grown at three plant populations after non-flooded rice (Oryza sativa) during the post-monsoon dry season in the Philippines. The site had a shallow fluctuating water table (1-2 m) but rooting depth was restricted to 0.8 m by a volcanic tuff layer. Soyabean had a longer duration (89 days) than mungbean (68 days) and intercepted more solar radiation, but from 61 days after sowing was severely stressed and accumulated little dry matter. Mungbean avoided severe water stress due to its short duration. Despite this stress, grain yield (1.0 t ha-1) was similar for the two species and soyabean yielded more grain nitrogen but less straw nitrogen than mungbean. Higher plant population achieved by narrower row spacing increased cumulative light interception and both grain and forage yields in both crops.

K. D. Shepherd, P. J. Gregory, T. Woodhead, R. K. Pandey y E. C Magbujos: Crecimiento de la soja (Glycine max) y del frijol mungo ("Vigna radiata) en la estacidn post-monz6n despuis del arroz de secano.

Resumen

Resumen

El crecimiento del retoño y la raiz y la reducción del agua fueron estudiados en el frijol mungo y la soja cultivados en tres densidades de plantatión después de arroz no-inundado (Oryza sativa) durante la estación seca post-monzón en las Filipinas. La localidad contaba con una capa freática fluctuante de poca profundidad (1-2 m), pero la profundidad de las raices quedaba limitada a 0,8 m debido a una capa de toba volcánica. La soja tuvo mayor duración (89 dias) que el frijol mungo (68 dias), e interceptó una mayor cantidad de radiación solar, pero a partir de los 61 dias después de la siembra sufrió gran estrés y acumuló muy poca materia seca. El frijol mungo evitó un severo estré s por falta de agua debido a su corta duración. A pesar de este estrés, el rendimiento de grano (1,0 t ha-1) rue similar para ambas especies y la soja rindió más nitrogeno en grano pero menos nitrógeno en paja que el frijol mungo. Una mayor densidad de plantation, lograda mediante un espaciamiento de hileras más estrecho, aumentó la interceptión cumulativa de la luz y los rendimientos tanto de grano como de forraje en ambos cultivos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmaras, R. R., Nelson, W. W. & Voorhees, W. B. (1975). Soyabean and corn rooting in Southwestern Minnesota. IL Root distributions and related water inflow. Soil Science Society of America Proceedings 39:771777.CrossRefGoogle Scholar
Angus, J. F., Hasegawa, S., Hsiao, T. G., Liboon, S. D. & Zandstra, H. G. (1983). The water balance of post-monsoonal dryland crops. Journal of Agricultural Science, Cambridge 101:699710.Google Scholar
Fehr, W. R. & Caviness, C. E. (1977). Stages of Soyabean Development. Special Report 80. Ames, Iowa: Iowa State University.Google Scholar
Gallagher, J. N. & Biscoe, P. V. (1978). Radiation, absorption, growth and yield of cereals. Journal of Agricultural Science, Cambridge 91:4760.Google Scholar
Gregory, P. J. (1988). Root growth of chickpea, faba bean, lentil and pea and effects of water and salt stresses. In World Crops: Cool Season Food Legumes, 857867 (Ed. R. J., Summerfield). London: Kluwer Academic CrossRefGoogle Scholar
IRRI (1986a). Deep cultivation of puddled and upland soils for rainfed mungbean. In international Rice Research Institute Annual Report for 1985, 291304. Manila, Philippines: International Rice Research Institute.Google Scholar
IRRI (1986b). Agrohydrology of upland rice. In International Rice Research Institute Annual Report for 1985, 313319. Manila, Philippines: International Rice Research Institute.Google Scholar
Klodpeng, , Thanom, & Morris, R. A. (1984). Drainage of a Tropaqualf before and after water extraction by a crop. Soil Science Society of America Journal 48:632635.Google Scholar
Monteith, J. L. (1986). How do crops manipulate supply and demand? Philosophical Transactions of the Royal Society of London A316:245259.Google Scholar
Muchow, R. C (1985a). Canopy development in grain legumes grown under different soil water regimes in a semi-arid tropical environment. Field Crops Research 11:99109.CrossRefGoogle Scholar
Muchow, R. C (1985b). An analysis of the effects of water deficits on grain legumes grown in a semiarid tropical environment in terms of radiation interception and its efficiency of use. Field Crops Research 11:309323.CrossRefGoogle Scholar
Muchow, R. C. & Charles-Edwards, D. A. (1982). An analysis of the growth of mungbeansat a range of plant densities in tropical Australia. I. Dry matter production. Australian Journal of Agricultural Research 33:4151.CrossRefGoogle Scholar
Tennant, D. (1975). A test of a modified line intersect method of estimating root length. Journal of Ecology 63:9951001.CrossRefGoogle Scholar
Zandstra, H. G. (1982). Effect of soil moisture and texture on the growth of upland crops after wetland rice. In Cropping Systems Research in Asia, 4254. Manila, Philippines: International Rice Research Institute.Google Scholar