Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T12:05:07.510Z Has data issue: false hasContentIssue false

Evolution of Grain Legumes. VI. The Future – the Exploitation of Evolutionary Knowledge

Published online by Cambridge University Press:  03 October 2008

J. Smartt
Affiliation:
Department of Biology, Building 44, The University, Southampton SO9 5NH, England

Summary

The future evolutionary potential of pulses is determined by the nature and extent of the genetic variability in the primary gene pool. This is extensive in the major grain legumes, notably the groundnut, soyabean, Phaseolus and faba beans, and in the cowpea. It is less extensive in the cultivated lupins and this appears to be a serious limitation to their development as useful crops. The considerable development of isolating mechanisms between related species of legumes has restricted the development of the secondary gene pool. This is most developed in the genus Arachis, where section Arachis provides an extensive secondary gene pool for the groundnut. Tertiary gene pools are potentially quite extensive for many grain legumes but since most interspecific hybrids are inviable this resource would be difficult to exploit with present techniques. The development of sophisticated gene transfer techniques for grain legumes is inhibited by their lack of amenability to in vitro culture. The suggestion is made that genetic resources profiles could be constructed on the basis of an expansion of Harlan and de Wet's gene pool system. These could serve as a guide to the present state of germplasm collections, indicating their strengths and weaknesses, which would be useful in formulating future collection and evaluation strategies.

The potential for more intensive exploitation of such legumes as the winged bean and lupins undoubtedly exists. The reasons for past under-exploitation of the winged bean need to be determined.

Grain legumes have an assured future for good economic and nutritional reasons. More attention probably should be devoted to exploiting the legume-Rhizobium symbiosis, fundamental to the development of efficient and economic farming systems in the developing world.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdou, Y. A. M. (1966). The source and nature of resistance in Arachis L. species to Mycospaerella arachidicola Jenk. and Mycosphaerella berkeleyii Jenk. and factors influencing sporulation of these fungi. PhD thesis, North Carolina State University, Raleigh, North Carolina.Google Scholar
Baudet, J. C. (1977). Origine et classification des espèces cultivées du genre Phaseolus. Bulletin Societé Royal Botanique Belge 110:6576.Google Scholar
De, D. N. (1974). Pigeon pea. In Evolutionary Studies in World Crops, 7987 (Ed. Hutchinson, J. B.). Cambridge: Cambridge University Press.Google Scholar
Dhaliwal, A. S., Pollard, L. H. & Lorz, A. P. (1962). Cytological behavior of an F1 species cross (Phaseolus lunatus L. var. Fordhook × Phaseolus polystachyus L.). Cytologia 27:369374.CrossRefGoogle Scholar
Duke, J. A. (1981). Handbook of Legumes of World Economic Importance. New York: Plenum.CrossRefGoogle Scholar
Freeman, G. F. (1912). South Western Beans and Teparies. University of Arizona Experiment Station Bulletin No. 68.Google Scholar
Gibson, A. H. (1980). Host determinants in nodulation and nitrogen fixation. In Advances in Legume Science, 6975 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Gladstones, J. S. (1970). Lupins as crop plants. Field Crop Abstracts 23:123148.Google Scholar
Gladstones, J. S. (1980). Recent developments in the understanding, improvement and use of lupins. In Advances in Legume Science, 603611 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Gregory, W. C. (1968). A radiation breeding experiment with peanuts. Radiation Botany 8:84147.CrossRefGoogle Scholar
Gregory, M. P. & Gregory, W. C. (1979). Exotic germ plasm of Arachis L. interspecific hybrids. Journal of Heredity 70:185193.CrossRefGoogle Scholar
Gregory, W. C., Krapovickas, A. & Gregory, M. P. (1980). Structures, variation, evolution and classification in Arachis. In Advances in Legume Science, 469481 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Harlan, J. R. & de Wet, J. M. (1971). Toward a rational classification of cultivated plants. Taxon 20:509517.CrossRefGoogle Scholar
Hymowitz, T. (1972). The trans-domestication concept as applied to guar. Economic Botany 26:4960.CrossRefGoogle Scholar
Hymowitz, T. (1976). Soybeans. In Evolution of Crop Plants, 159162 (Ed. Simmonds, N. W.). London: Longman.Google Scholar
Khan, T. N. & Eagleton, G. E. (1980). The winged bean, Psophocarpus tetragonolobus. In Advances in Legume Science, 383392 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Klozová, E. & Turková, V. (1978). The polymorphism of a seed protein with phytohaemagglutinating activity in the cultivar of Phaseolus vulgaris L. Biologia Plantarum 20:373376.CrossRefGoogle Scholar
Krapovickas, A. & Rigoni, V. A. (1957). Nuevas especies de Arachis vinculadas al problem del origen del maní. Darwiniana 11:431455.Google Scholar
Kupicha, F. K. (1981). Tribe 21- Vicieae. In Advances in Legume Systematics, 377381 (Eds Polhill, R. M. & Raven, P. H.). Kew: Royal Botanic Gardens.Google Scholar
Ladizinsky, G. & Adler, A. (1976). The origin of chickpea Cicer arietinum L. Euphytica 25:211217.CrossRefGoogle Scholar
Lukoki, L., Maréchal, R. & Otoul, E. (1980), Les ancestres sauvages des haricots cultivées: Vigna radiata (L.) Wilczek et V. mungo (L.) Hepper. Bulletin du Jardin Botanique de Belgique 50:385391.CrossRefGoogle Scholar
Maréchal, R. & Baudet, J. C. (1977). Transfert du genre africain Kerstingiella Harms à Macrotyloma (Wight & Arn.) Verde. (Papilionaceae). Bulletin du Jardin Botanique Nationale de Belgique 47:4952.CrossRefGoogle Scholar
Maréchal, R., Mascherpa, J. M. & Stainier, F. (1978). Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28:1273.Google Scholar
NAS (1975). The Winged Bean - a High Protein Crop for the Tropics. Washington D.C.: National Academy of Sciences.Google Scholar
NRC (1981). The Winged Bean - a High Protein Crop for the Tropics (2nd edition). Washington D.C.: National Academy Press.Google Scholar
Orf, J. H. & Hymowitz, T. (1979). Genetics of the Kunitz trypsin inhibitor: an antinutritional factor in soybeans. Journal of the American Oil Chemists' Society 56:722726.CrossRefGoogle Scholar
Orf, J. H., Hymowitz, T., Pull, S. P. & Pueppke, S. G. (1978). Inheritance of a soybean seed lectin. Crop Science 18:899900.CrossRefGoogle Scholar
Prendota, K., Baudoin, J. P. & Maréchal, R. (1982). Fertile allopolyploids from the cross Phaseolus acutifolius × Phaseolus vulgaris. Bulletin des Recherches Agronomiques de Gembloux 17:177189.Google Scholar
Pursglove, J. W. (1968). Tropical Crops: Dicotyledons. London: Longman.Google Scholar
Rutter, J. & Percy, S. (1984). The pulse that maims. New Scientist 103 no. 1418:2223.Google Scholar
Smartt, J. (1976a). Tropical Pulses. London: Longman.Google Scholar
Smartt, J. (1976b). Comparative evolution of pulse crops. Euphytica 25:139143.CrossRefGoogle Scholar
Smartt, J. (1978a). The evolution of pulse crops. Economic Botany 32:185198.CrossRefGoogle Scholar
Smartt, J. (1978b). Makulu Red - a Green Revolution groundnut variety? Euphytica 27:605608.CrossRefGoogle Scholar
Smartt, J. (1979). Interspecific hybridization in the grain legumes - a review. Economic Botany 33:329337.CrossRefGoogle Scholar
Smartt, J. (1980). Evolution and evolutionary problems in food legumes. Economic Botany 34:219235.CrossRefGoogle Scholar
Smartt, J. (1981). Evolving gene pools in crop plants. Euphytica 30:415418.CrossRefGoogle Scholar
Smartt, J. (1984). Gene pools in grain legumes. Economic Botany 38:2435.CrossRefGoogle Scholar
Smartt, J., Gregory, W. C. & Gregory, M. P. (1978a). The genomes of Arachis hypogaea 1. Cytogenetic studies of putative genome donors. Euphytica 27:665675.CrossRefGoogle Scholar
Smartt, J., Gregory, W. C. & Gregory, M. P. (1978b). The genomes of Arachis hypogaea 2. The implications in interspecific breeding. Euphytica 27:677680.CrossRefGoogle Scholar
Smartt, J. & Haq, N. (1972). Fertility and segregation of the amphidiploid Phaseolus vulgaris L. × P. coccineus L. and its behaviour in backcrosses. Euphytica 21:496501.CrossRefGoogle Scholar
Thomas, C. V. & Waines, J. G. (1984). Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. Journal of Heredity 75:9398.CrossRefGoogle Scholar
Townsend, C. C. & Guest, E. (1974). Flora of Iraq, Volume 3, Leguminales. Baghdad: Ministry of Agriculture and Agrarian Reform.Google Scholar
Van der Maesen, L. J. G. (1980). India is the native home of the pigeon pea. Miscellaneous Papers 19:257262. Wageningen: Landbouwhogeschool.Google Scholar
Verdcourt, B. (1980). The classification of Dolichos L. emend. Verdc., Lablab Adans., Phaseolus L., Vigna Savi and their allies. In Advances in Legume Science 4548 (Eds Summerfield, R. J. & Bunting, A. H.). London: HMSO.Google Scholar
Verdcourt, B. (1981). The correct name for the Bambara groundnut. Kew Bulletin 35:474.CrossRefGoogle Scholar
Verdcourt, B. & Halliday, P. (1978). A revision of Psophocarpus (Leguminosae Papilionoideae - Phaseoleae). Kew Bulletin 33:191227.CrossRefGoogle Scholar
Zohary, D. (1972). The wild progenitor and the place of origin of the cultivated lentil Lens culinaris. Economic Botany 26:326332.CrossRefGoogle Scholar
Zohary, D. & Hopf, M. (1973). Domestication of pulses in the Old World. Science 182:887894.CrossRefGoogle ScholarPubMed