Article contents
EFFECTS OF TEMPERATURE, PHOTOPERIOD AND DEFOLIATION ON FLOWERING TIME OF LOTUS TENUIS (FABACEAE) IN BUENOS AIRES, ARGENTINA
Published online by Cambridge University Press: 28 March 2017
Summary
The phenological development of crops from emergence to flowering time is largely controlled by temperature and photoperiod. Flowering time is a critical phenological stage for subsequent reproductive phase. Lotus tenuis management in grasslands, pastures and seed production systems is through defoliation and sowing date; however, yet little is known about their effects on flowering time. The data presented in this study were obtained from experiments conducted with L. tenuis during the years 1989 to 2016 under field conditions. Our objectives were to determine if flowering time (a) is affected by sowing date; (b) can be predicted through equations using temperature and photoperiod and (c) is affected by defoliation applied at vegetative stage. Two defoliation intensities were applied, low (LDI) crop height reduced by 54% compared to pre-defoliation crop height and high (HDI), crop height reduced by 75%. The rate of progress from seedling emergence to flowering time (inverse of time from emergence to first flowering, 1/f) was modulated by temperature, photoperiod and photothermal functions. When L. tenuis sowing was delayed from autumn to spring, time from seedling emergence to first flowering decreased from 260 to 100 days. 1/f was linearly related to average temperature (R²=0.75) and photoperiod (R²=0.85) and both variables (R²=0.92). Defoliation retarded flowering time. Flower and pod growth periods were shorter under defoliation than in control one. Defoliation did not cause abortion of flowers and pods. Flower production was fitted to quadratic function of photoperiod. Flowering peak was approximately within 15.2 h. The prediction of flowering time using thermal, photoperiod and photothermal models can provide information about crop management decisions, such as optimal environmental regimes for crop growth through sowing date.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
REFERENCES
- 2
- Cited by