Published online by Cambridge University Press: 16 September 2015
Prolonged inability of yam tubers to sprout/germinate is associated with the expression of tuber dormancy, and the start of dormancy in tubers is linked to the onset of tuber formation. Although the plant hormone, abscisic acid (ABA) is known to regulate the onset and maintenance of dormancy in tubers, there are no known method(s) of inducing shoot growth (sprouting) on seed yam tubers that are harvested at 240 days after vine emergence or earlier. Therefore, this study was conducted to: (1) determine whether the absorption of fluridone, a reputed ABA inhibitor, prior to or during early seed yam tuber formation would induce sprouting, and (2) determine the effect of fluridone on early shoot growth. The study was a 2×4 factorial experiment arranged in a Completely Randomized Design (CRD) with eight treatment combinations replicated three times. Two species of yam with long dormancy durations were used: D. rotundata var TDr 131 and D. alata var TDa 98/01166; and three concentrations of fluridone were tested (30, 50, 100 µM). Young plants (69 days after vine emergence) of TDr 131 and TDa 98/01166 were grown in a coco coir medium hydroponics system using Hoagland's Nutrient Solution, with or without the test fluridone concentrations. In all fluridone treatments, most leaves of both species of yam had 30–90% of their surface bleached while the stems appeared purplish. In both Controls, all the newly formed seed tubers that were harvested at 90 and 104 days after vine emergence were dormant (devoid of any new shoots/sprouts). In contrast, over 70% of the seed tubers that developed in 30 and 100 µM fluridone had at least one new shoot, particularly in TDa 98/01166. The fluridone treatments did not significantly affect tuber weight or vegetative growth parameters like dimensions and number of leaves. This study has shown that the duration from vine emergence of the old tuber to sprouting of the new tuber can be reduced by more than half if young plants absorbed fluridone during early tuber development.