Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-05T02:49:51.181Z Has data issue: false hasContentIssue false

DETECTING GENE FLOW FROM ALS-RESISTANT HYBRID AND INBRED RICE TO WEEDY RICE USING SINGLE PLANT POLLEN DONORS

Published online by Cambridge University Press:  13 March 2015

I. C. G. R. GOULART
Affiliation:
Crop Science Department, Agronomy School, Federal University of Rio Grande do Sul, UFRGS, 7712 Bento Gonçalves Ave, Porto Alegre, RS, 91501–970, Brazil Embrapa Forestry, Estrada da Ribeira, km 111, Colombo, PR, 83411-000, Brazil
V. G. MENEZES
Affiliation:
Rice Institute of the Rio Grande do Sul, IRGA, 1494 Bonifácio Carvalho Bernardes Ave, Cachoeirinha, RS, 94930-030, Brazil
E. D. BORTOLY
Affiliation:
Crop Science Department, Agronomy School, Federal University of Rio Grande do Sul, UFRGS, 7712 Bento Gonçalves Ave, Porto Alegre, RS, 91501–970, Brazil
V. KUPAS
Affiliation:
Crop Science Department, Agronomy School, Federal University of Rio Grande do Sul, UFRGS, 7712 Bento Gonçalves Ave, Porto Alegre, RS, 91501–970, Brazil
A. MEROTTO JR.*
Affiliation:
Crop Science Department, Agronomy School, Federal University of Rio Grande do Sul, UFRGS, 7712 Bento Gonçalves Ave, Porto Alegre, RS, 91501–970, Brazil
*
Corresponding author. Email: [email protected]

Summary

Gene flow from herbicide-resistant rice (Oryza sativa L.) cultivars can affect the biodiversity of Oryza spp. and can result in the lack of opportunity to control weedy rice through selective herbicides. The aim of the present study was to quantify the outcrossing rate from the herbicide-resistant red rice and rice cultivars carrying three different ALS (acetolactate synthase) alleles using a single plant pollen donor approach. A field experiment was performed using the encircle population combination technique. The main plots comprised the pollen-receptor IRGA 417 cultivar or a susceptible biotype of weedy rice, and the subplots comprised the pollen-donor inbred cultivars IRGA 422 CL and PUITÁ INTA CL, the hybrid SATOR CL or a resistant biotype of weedy rice. Among the pollen-donors, the outcrossing rate for pollen receptor susceptible weedy rice and the IRGA 417 cultivar was 0.0344% and 0.0142%, respectively. Rice cultivars carrying the ALS gene mutations Ala122Thr, Ser653Asn and Gly654Asn showed a similar outcrossing rate of 0.0243%. The outcrossing rate decreased over a distance of up to 3.5 m from the pollen-donor and was not affected by the wind cardinal direction. The risk of gene flow of herbicide resistance from rice to weedy rice should be reduced through the development of new strategies to contain and mitigate gene flow and of the elimination of weedy rice escapees.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burgos, N. R., Norsworthy, J. K., Scott, R. C. and Smith, K. L. (2008). Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technology 22 (1):200208.Google Scholar
Chauhan, B. S. (2013). Strategies to manage weedy rice in Asia. Crop Protection 48:5156.Google Scholar
Chen, L. J., Lee, D. S., Song, Z. P., Suh, H. S. and Lu, B. R. (2004). Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93 (1):6773.Google Scholar
Croughan, T. P., Utomo, H. S., Sanders, D. E. and Braverman, M. P. (1996). Herbicide-resistant rice offers potential solution to red rice problem. Louisiana Agriculture 39:1012.Google Scholar
Délye, C., Boucansaud, K., Pernin, F. and Le Corre, v. (2009). Variation in the gene encoding acetolactate-synthase in Lolium species and proactive detection of mutant, herbicide-resistant alleles. Weed Research 49 (3):326336.CrossRefGoogle Scholar
Diarra, A., Smith, R. J. and Talbert, R. E. (1985). Growth and morphological characteristics of red rice (Oryza sativa) biotypes. Weed Science 33 (3):310314.Google Scholar
Ellstrand, N. C. (2009). Evolution of invasiveness in plants following hybridization. Biological Invasions 11 (5):10891091.Google Scholar
Gealy, D. R., Mitten, D. H. and Rutger, J. N. (2003). Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technology 17 (3):627645.CrossRefGoogle Scholar
Goulart, I. C. G. R.; Matzenbacher, F. O. and Merotto, A. Jr. (2012b). Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations. Weed Research 52 (3):224232.Google Scholar
Goulart, I. C. G. R., Pacheco, M. T., Nunes, A. L. and Merotto, A. Jr. (2012a). Identification of origin and analysis of population structure of field-selected imidazolinone-herbicide resistant red rice (Oryza sativa). Euphytica 187 (3):437447.Google Scholar
Gressel, J. and Valverde, B.E. (2009). A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Management Science 65:723731.Google Scholar
Harlan, J. R. (1975). Crops and Man. Madison, WI: American Society of Agronomy.Google Scholar
Jhala, A. J., Bhatt, H., Topinka, K. and Hall, L. M. (2011). Pollen-mediated gene flow in flax (Linum usitatissimum L.): can genetically engineered and organic flax coexist? Heredity 106 (4):557566.CrossRefGoogle ScholarPubMed
Kaloumenos, N. S., Capote, N., Aguado, A. and Eleftherohorinos, I. G. (2013). Red rice (Oryza sativa) cross-resistance to imidazolinone herbicides used in resistant rice cultivars grown in northern Greece. Pesticide Biochemistry and Physiology 105 (3):177183.Google Scholar
Kanya, J. I., Kinyamario, J. I., Amugune, N. O. and Hauser, T. P. (2009). Dispersal distance of rice (Oryza Sativa L.) pollen at the Tana river delta in the coast province, Kenya. African Journal of Biotechnology 8 (10):22652270.Google Scholar
Kuroda, Y., Sato, Y.-I., Bounphanousay, C., Kono, Y. and Tanaka, K. (2007). Genetic structure of three Oryza AA genome species (O. rufipogon, O. nivara and O. sativa) as assessed by SSR analysis on the vientiane plain of laos. Conservation Genetics 8:149158.CrossRefGoogle Scholar
Langevin, S. A., Clay, K. and Grace, J. B. (1990). The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution 44 (4):10001008.CrossRefGoogle ScholarPubMed
Massa, D., Krenz, B. and Gerhards, R. (2011). Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations. Weed Research 51:294303.Google Scholar
Matsui, T. and Kagata, H. (2003). Characteristics of floral organs related to reliable self-pollination in rice (Oryza sativa L.). Annals of Botany 91 (4):473477.Google Scholar
Mehrotra, D. V., Lu, X. M. and Li, X. M. (2010). Rank-based analyses of stratified experiments: alternatives to the van elteren test. American Statistician 64 (2):121130.Google Scholar
Menezes, V. G., Mariot, C. H. P., Kalsing, A. and Goulart, I. C. G. R. (2009). Arroz-vermelho (Oryza sativa) resistente aos herbicidas imidazolinonas. Planta Daninha 27:10471052.Google Scholar
Messeguer, J., Fogher, C., Guiderdoni, E., Marfà, V., Català, M. M., Baldi, G. and Melé, E. (2001). Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theoretical and Applied Genetics 103 (8):11511159.Google Scholar
Messeguer, J., Marfà, V., Català, M. M., Guiderdoni, E. and Melé, E. (2004). A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Molecular Breeding 13 (1):103112.Google Scholar
Noldin, J. A., Yokoyama, S., Antunes, P. and Luzzardi, R. (2002). Potencial de cruzamento natural entre o arroz transgênico resistente ao herbicida glufosinato de amônio e o arroz daninho. Planta Daninha 20:243251.Google Scholar
Roso, A. C., Jr, A. M., Delatorre, C. A. and Menezes, V. G. (2010a). Regional scale distribution of imidazolinone herbicide-resistant alleles in red rice (Oryza sativa L.) determined through SNP markers. Field Crops Research 119 (1):175182.Google Scholar
Roso, A. C., Merotto, Jr., A. and Delatorre, C. A. (2010b). Bioensaios para diagnóstico da resistência aos herbicidas imidazolinonas em arroz. Planta Daninha 28:411419.Google Scholar
Sanchez-Olguin, E., Arrieta-Espinoza, G., Lobo, J. and Espinoza-Esquivel, A. (2009). Assessment of gene flow from a herbicide-resistant indica rice (Oryza sativa L.) to the Costa Rican weedy rice (Oryza sativa) in Tropical America: factors affecting hybridization rates and characterization of F1 hybrids. Transgenic Research 18 (4):633647.Google Scholar
Scarabel, L.; Cenghialta, C.; Manuello, D. and Sattin, M. (2012). Monitoring and management of imidazolinone-resistant red rice (Oryza sativa L., var. sylvatica) in clearfield® Italian paddy rice. Agronomy 2 (4):371383.Google Scholar
Shivrain, V. K., Burgos, N. R., Anders, M. M., Rajguru, S. N., Moore, J. and Sales, M. A. (2007). Gene flow between Clearfield rice and red rice. Crop Protection 26 (3):349356.Google Scholar
Shivrain, V. K, Burgos, N. R., Sales, M. A., Mauromoustakos, A., Gealy, D. R., Smith, K. L., Black, H. L. and Jia, M. (2009). Factors affecting the outcrossing rate between Clearfield (TM) rice and red rice (Oryza sativa). Weed Science 57 (4):394403.Google Scholar
Song, Z. P., Lu, B.-R., Zhu, Y. G. and Chen, J. K. (2003). Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist 157 (3):657665.Google Scholar
Sudianto, E., Beng-Kah, S., Ting-Xiang, N., Saldain, N. E., Scottd, R. C. and Burgos, N. R. (2013). Clearfield(R) rice: Its development, success, and key challenges on a global perspective. Crop Protection 49:4051.CrossRefGoogle Scholar
Wenefrida, I., Utomo, H. S., Meche, M. M. and Nash, J. L. (2007). Inheritance of herbicide resistance in two germplasm lines of Clearfield* rice (Oryza sativa L.). Canadian Journal of Plant Science 87 (3):659669.Google Scholar
Yao, K. M., Hu, N., Chen, W. L., Li, R. Z., Yuan, Q. H., Wang, F., Qian, Q. and Jia, S. R. (2008). Establishment of a rice transgene flow model for predicting maximum distances of gene flow in Southern China. New Phytologist 180 (1):217228.CrossRefGoogle ScholarPubMed
Zimmermann, F. J. P. (2004). Estatística Aplicada à Pesquisa Agrícola. Santo Antônio de Goiás: Embrapa Arroz e Feijão.Google Scholar