Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T07:37:48.387Z Has data issue: false hasContentIssue false

ADAPTABILITY OF IRRIGATED RICE TO TEMPERATURE CHANGE IN SAHELIAN ENVIRONMENTS

Published online by Cambridge University Press:  26 January 2011

MICHIEL E. DE VRIES*
Affiliation:
Plant Production Systems, Wageningen University, PO Box 430, 6700AK Wageningen, The Netherlands Africa Rice Center, Sahel Station, BP 96, St Louis, Sénégal
PETER A. LEFFELAAR
Affiliation:
Plant Production Systems, Wageningen University, PO Box 430, 6700AK Wageningen, The Netherlands
NOMÉ SAKANÉ
Affiliation:
Plant Production Systems, Wageningen University, PO Box 430, 6700AK Wageningen, The Netherlands Africa Rice Center, Sahel Station, BP 96, St Louis, Sénégal
BOUBIÉ V. BADO
Affiliation:
Africa Rice Center, Sahel Station, BP 96, St Louis, Sénégal
KEN E. GILLER
Affiliation:
Plant Production Systems, Wageningen University, PO Box 430, 6700AK Wageningen, The Netherlands
*
§Corresponding author. [email protected]

Summary

To assess genotype adaptability to variable environments, we evaluated five irrigated rice genotypes, three new varieties, WAS161, a NERICA, IR32307 and ITA344, and two controls: Sahel 108, the most popular short-duration variety in the region, and IR64. In a field experiment conducted at two locations, Ndiaye and Fanaye, along the Senegal River, rice was sown on 15 consecutive dates at one month intervals starting in February 2006. Yield (0–12.2 t ha−1) and crop cycle duration (117–190 days) varied with sowing date, genotype and site. Rice yield was very sensitive to sowing date and the associated temperature regimes. Spikelet sterility due to cold stress (T < 20 °C) was observed when the crops were sown in August (Ndiaye), September (Ndiaye and Fanaye) and October (Ndiaye and Fanaye), and heat stress (T > 35 °C) resulted in spikelet sterility when sowing took place in April (Ndiaye and Fanaye) and May (Fanaye). For all experiments the source and sink balance was quantified and showed that yield was most limited by sink size when sowing between July and October. Variety WAS 161 was least affected by genotype × environment interactions, resulting in lower interactive principal component values. An increase in minimum temperature of 3 °C could decrease spikelet sterility from 100 to 45%. These changes in temperature are likely to force rice farmers in the Senegal River to adjust the cropping calendar, e.g. to delay planting or to use heat-tolerant genotypes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bado, B. V., De Vries, M. E., Haefele, S., Wopereis, M. C. S. and N’ Diaye, M. K. (2008). Critical limit of extractable phosphorous in a gleysol for rice production in the Senegal river valley of West Africa. Communications in Soil Science and Plant Analysis 39: 202206.CrossRefGoogle Scholar
Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R. and Yanda, P. (2007). Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 433467 (Eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. and Hanson, C. E.). Cambridge UK: Cambridge University Press.Google Scholar
Connor, D., Comas, J., Macpherson, H.-G. and Mateos, L. (2008). Impact of small-holder irrigation on the agricultural production, food supply and economic prosperity of a representative village beside the Senegal River, Mauritania. Agricultural Systems 96: 115.CrossRefGoogle Scholar
de Vries, M. E., Rodenburg, J., Bado, B. V., Sow, A., Leffelaar, P. A. and Giller, K. E. (2010). Rice production with less irrigation water is possible in a Sahelian environment. Field Crops Research 116: 154164.CrossRefGoogle Scholar
Diagne, M. (2006). Simulation de l'utilisation optimale des ressources des riziculteurs dans la vallee du fleuce Senegal. St Louis: Université Gaston Berger.Google Scholar
Dingkuhn, M. (1995). Climatic determinants of irrigated rice performance in the Sahel – III. Characterizing environments by simulating crop phenology. Agricultural Systems 48: 435456.CrossRefGoogle Scholar
Dingkuhn, M., Jones, M. P., Johnson, D. E. and Sow, A. (1998). Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research 57: 5769.CrossRefGoogle Scholar
Dingkuhn, M. and Miezan, K. M. (1995). Climatic determinants of irrigated rice performance in the Sahel – II. Validation of photothermal constants and characterization of genotypes. Agricultural Systems 48: 411433.CrossRefGoogle Scholar
Dingkuhn, M. and Sow, A. (1997). Potential yields of irrigated rice in the Sahel. In Irrigated Rice in the Sahel: Prospects for Sustainable Development, 361379 (Eds Miézan, K. M., Wopereis, M. C. S., Dingkuhn, M., Deckers, J. and Randolph, T. F.). Bouaké, Côte d'Ivoire: WARDA.Google Scholar
Dingkuhn, M., Sow, A., Samb, A., Diack, S. and Asch, F. (1995). Climatic determinants of irrigated rice performance in the Sahel – I. Photothermal and micro-climatic responses of flowering. Agricultural Systems 48: 385410.CrossRefGoogle Scholar
Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., Higashitani, A., Watanabe, M. and Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology 50: 19111922.CrossRefGoogle ScholarPubMed
GauchH. G., Jr. H. G., Jr. and Zobel, R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science 37: 311326.CrossRefGoogle Scholar
Haefele, S. M., Wopereis, M. C. S. and Donovan, C. (2002). Farmers’ perceptions, practices and performance in a Sahelian irrigated rice scheme. Experimental Agriculture 38: 197210.CrossRefGoogle Scholar
Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S., Bennett, J. and Craufurd, P. Q. (2010). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany 61: 143156.CrossRefGoogle ScholarPubMed
Jing, Q., Spiertz, H. J., Hengsdijk, H., van Keulen, H., Cao, W. and Dai, T. (2010). Adaptation and performance of rice genotypes in tropical and subtropial environments. NJAS Wageningen Journal of Life Sciences 57: 149158.CrossRefGoogle Scholar
Jury, M. and Whitehall, K. (2010). Warming of an elevated layer over Africa. Climatic Change 99: 229245.CrossRefGoogle Scholar
Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W. and Shiraiwa, T. (2008). The high yield of irrigated rice in Yunnan, China: `A cross-location analysis’. Field Crops Research 107: 111.CrossRefGoogle Scholar
le Gal, P. Y. and Papy, F. (1998). Co-ordination processes in a collectively managed cropping system: Double cropping of irrigated rice in Senegal. Agricultural Systems 57: 135159.CrossRefGoogle Scholar
Mann, C. C. (1999). Crop scientists seek a new revolution. Science 283: 310314.CrossRefGoogle Scholar
Poussin, J.-C., Diallo, Y. and Legoupil, J. C. (2006). Improved collective decision-making in action for irrigated rice farmers in the Senegal River Valley. Agricultural Systems 89: 299323.CrossRefGoogle Scholar
Poussin, J. C., Wopereis, M. C. S., Debouzie, D. and Maeght, J. L. (2003). Determinants of irrigated rice yield in the Senegal River valley. European Journal of Agronomy 19: 341356.CrossRefGoogle Scholar
Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. E. and Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95: 398411.CrossRefGoogle Scholar
Rodenburg, J., Diagna, A., Oikeh, S., Futakuchi, K., Kormawa, P. M., Semon, M., Akintayo, I., Cisse, B., Sie, M., Narteh, L., Nwilene, F., Diatta, S., Sere, Y., Ndjiondiop, M. N., Youm, O. and Keya, S. O. (2006). Achievements and impact of NERICA on sustainable rice production in sub-Saharan Africa. In 21st Session of the International Rice Commission, 4558Chiclayo, Peru: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
SAED (2007). Superficies et productions de riz dans la VFS entre 1990 et 2006. Saint Louis, Sénégal: SAED/DDAR/CSE.Google Scholar
Sanni, K. A., Ariyo, O. J., Ojo, D. K., Gregorio, G., Somado, E. A., Sanchez, I., Sie, M., Futakuchi, K., Ogunbayo, S. A., Guei, R. G. and Wopereis, M. C. S. (2009). Additive main effects and multiplicative interactions analysis of grain yield performances in rice genotypes across environments. Asian Journal of Plant Sciences 8: 4853.CrossRefGoogle Scholar
Shimono, H., Hasegawa, T., Moriyama, M., Fujimura, S. and Nagata, T. (2005). Modeling spikelet sterility induced by low temperature in rice. Agrononmy Journal 97: 15241536.CrossRefGoogle Scholar
Sie, M., Dingkuhn, M., Wopereis, M. C. S. and Miezan, K. M. (1998). Rice crop duration and leaf appearance rate in a variable thermal environment. II. Comparison of genotypes. Field Crops Research 58: 129140.CrossRefGoogle Scholar
Sie, M., Kabore, K. B., Dakou, D., Dembele, Y., Segda, Z., Bado, B. V., Ouedraogo, M., Thio, B., Ouedraogo, I., Moukoumbi, Y. D., Ba, N. M., Traore, A., Sanou, I., Ogunbayo, S. A. and Toulou, B. (2007). Release of four new interspecific varieties for the rainfed lowland in Burkina Faso. International Rice Research Notes 32: 1617.Google Scholar
Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H. and Sumfleth, K. (2009). Climate change affecting rice production. The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101: 59122.CrossRefGoogle Scholar
Yin, X. (1996). Rice flowering in response to diurnal temperature amplitude. Field Crops Research 48: 19.CrossRefGoogle Scholar
Zhang, Y., Tang, Q., Zou, Y., Li, D., Qin, J., Yang, S., Chen, L., Xia, B. and Peng, S. (2009). Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research 114: 9198.CrossRefGoogle Scholar