Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:17:35.942Z Has data issue: false hasContentIssue false

SOIL PROPERTIES AND AGRONOMIC PERFORMANCE OF WATERMELON GROWN IN DIFFERENT TILLAGE AND COVER CROPS IN THE SOUTH EASTERN OF BRAZIL

Published online by Cambridge University Press:  13 November 2014

ROBERTO BOTELHO FERRAZ BRANCO*
Affiliation:
Department of Crop Science, Agência Paulista de Tecnologia dos Agronegócios (APTA) – Pólo Centro Leste – Av. Bandeirantes, 2419, 14030-000 Ribeirão Preto – SP, Brazil
RODRIGO HIYOSHI DALMAZZO NOWAKI
Affiliation:
Faculdade de Ciências Agrárias, Universidade de Marília (UNIMAR), Rua Hygino Muzy Filho, 1001, 17525-902 Marília – SP, Brazil
FERNANDO ANDRÉ SALLES
Affiliation:
Department of Crop Science, Agência Paulista de Tecnologia dos Agronegócios (APTA) – Pólo Centro Leste – Av. Bandeirantes, 2419, 14030-000 Ribeirão Preto – SP, Brazil
DENIZART BOLONHEZI
Affiliation:
Department of Crop Science, Agência Paulista de Tecnologia dos Agronegócios (APTA) – Pólo Centro Leste – Av. Bandeirantes, 2419, 14030-000 Ribeirão Preto – SP, Brazil
RONAN GUALBERTO
Affiliation:
Faculdade de Ciências Agrárias, Universidade de Marília (UNIMAR), Rua Hygino Muzy Filho, 1001, 17525-902 Marília – SP, Brazil
*
Corresponding author. Email: [email protected]

Summary

Much of the watermelon (Citullus lanatus) cultivation in Brazil is conducted in sandy soil and topographic conditions that favour the erosion process. Therefore, conservation tillage methods are critical for the sustainability of the production chain of this vegetable crop. We studied different tillage methods and cover crops in watermelon cultivation in the area of the reform of degraded pasture. For this purpose, two tillage methods were established as experimental treatments: minimum tillage preparation with subsoiling only, and no tillage. As cover crops white lupine (Lupinus albus) and bristle oat (Avena strigosa) were seeded. As control, watermelon was cultivated with conventional tillage, without prior cultivation of cover crops. For the experimental design, randomised blocks in a factorial arrangement with four replications were used. After liming and phosphate fertilisation of the soil, cover crops were cultivated in soil with minimum tillage and no tillage to produce straw to be used for soil cover, where subsequently the watermelon was grown. The productivity of dry mass and nutrient accumulation in the shoot of cover crops, the soil properties and the watermelon agronomic performance were evaluated. White lupine had better performance in the production of dry mass and nutrient accumulation in shoot than bristle oat. There were differences among treatments for soil penetration resistance, where in conventional tillage the values were lower in the first 30 cm of depth in relation to no-tillage cultivation. The tillage method also affected the fertility of the soil at a depth of 0 to 20 cm. The no tillage provided increased nitrogen leaf content in watermelon regardless of cover crops but restricted root growth in relation to minimum tillage and conventional tillage. Watermelon had similar commercial production by different treatments, with reduction only in no tillage on bristle oat straw.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adekiya, A. O., Ojeniyi, S. O. and Agbede, T. M. (2011). Soil physical and chemical properties and cocoyam yield under different tillage systems in tropical alfisol. Experimental Agriculture 47:477488.Google Scholar
Bolliger, A., Magid, J., Amado, T. J. C., Skóra Neto, F., Ribeiro, M. F. S., Calegari, A., Ralisch, R. and Neergaard, A. (2006). Taking stock of the Brazilian ‘zero till revolution’: a review of landmark research and farmers’ practice. Advances in Agronomy 91:48110.Google Scholar
Caires, E. F., Alleoni, L. R. F., Cambri, M. A. and Barth, G. (2005). Surface application of lime for crop grain production under a no-till system. Agronomy Journal 97:791798.Google Scholar
Calonego, J. C. and Rosolen, C. A. (2010). Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy 33:242249.Google Scholar
Castellane, P. D. and Cortez, G. E. P. (1995). A Cultura da Melancia. Jaboticabal, Brazil: FUNEP, 64 pp.Google Scholar
Castro, C. M., Alves, B. J. R., Almeida, D. L. and Ribeiro, R. L. B. (2004). Adubação verde como fonte de nitrogênio para a cultura da berinjela em sistema orgânico. Pesquisa Agropecuária Brasileira 39:779785.CrossRefGoogle Scholar
Chen, G. and Weil, R. R. (2010). Penetration of cover crop roots through compacted soils. Plant Soil 331:3134.CrossRefGoogle Scholar
Derpsch, R., Sidiras, N. and Roth, C. H. (1986). Results of studies made from 1977 to 1984 to control erosion by cover crops and no tillage techniques in Paraná, Brazil. Soil and Tillage Research 8:253263.CrossRefGoogle Scholar
Drost, D. and Wilcox-Lee, D. (2000). Tillage alters root distribution in a mature asparagus planting. Scientia Horticulture – Amsterdam 83:187204.Google Scholar
FAO (Food and Agriculture Organization). (2011). Basic principles of conservation agriculture. Available at: http://www.fao.org/ag/1a.html (accessed on 27 July 2012).Google Scholar
Febrapdp (Federação Brasileira de plantio Direto na Palha). (2012). Brasil – Evolução da área cultivada em plantio direto 2002–2003 e2005–2006. Available at: http://www.febrapdp.org.br/download/BREvolucaoPD2002a2006.pdf (accessed on 27 July 2012).Google Scholar
Godsey, C. B., Pierzysnki, , Mengel, G. M., , D. B. and Lamond, , , R. E. (2007). Management of soil acidity in no-till production systems through surface application of lime. Agronomy Journal 99:764772.Google Scholar
Gonçalves, C. N. and Carreta, C. A. (1999). Plantas de cobertura de solo antecedendo o milho e seu efeito sobre o carbono orgânico do solo, sob plantio direto. Revista Brasileira de Ciencia do Solo 23:307313.Google Scholar
Handerson, C. W. L. (1991). Sensitivity of eight cereal and legume species to the compactation status of deep, sandy soils. Australian Journal of Experimental Agriculture 31:347355.CrossRefGoogle Scholar
Hoyt, G. D., Monks, D. W. and Monaco, T. J. (1994). Conservation tillage for vegetable production. HortTechnology 4:129135.Google Scholar
IBGE (Instituto Brasileiro de Geografia e Estatística). (2010). Produção agrícola municipal – culturas temporárias e permanentes. Available at: http://www.ibge.gov.br/home/estatistica/economia/pam/2010/default.shtm (accessed on 27 July 2012).Google Scholar
Keshavarzpour, D. W. and Rashidi, M. (2008). Effect of different tillage methods on soil physical properties and crop yield of watermelon (Citrullus vulgaris). World Applied Sciences Journal 3:359364.Google Scholar
Lal, R., Reicosky, D. C. and Hanson, J. D. (2007). Evolution of the polw overs 10.00 years and the rationale for no-till farming. Soil and Tillage Research 93:112.Google Scholar
Littell, R. C., Stroup, W. W. and Freund, R. J. (2002). SAS for Linear Models, 4th edn.Cary, NC: SAS Institute.Google Scholar
López, M. V., Blanco-Moure, N., Limón, L. Á. and Garcia, R. (2012). No tillage in rainfed Aragon (NE Spain): effect on organic carbon in the soil surface horizon. Soil and Tillage Research 118:6165.Google Scholar
Marouelli, W. A., Silva, W. L. C. and Silva, H. R. (1994). Manejo de Irrigação de Hortaliças. Brasília: Embrapa, 60 pp.Google Scholar
Morse, R. D. (1999). No-till vegetable production – its time is now. HortTechnology 9 (3):373379.Google Scholar
O’Rourke, J. A., Yang, S. S., Miller, S. S., Bucciarelli, B., Liu, J., Rydeen, A., Bozsoki, Z., Uhde-Stone, C., Tu, Z. J., Allan, D., Gronwald, J. W. and Vance, C. P. (2013). An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiology 161:705724.Google Scholar
Perin, A., Santos, R. H. S, Urquiaga, S., Guerra, J. G. M. and Cecon, P. R. (2004). Efeito residual da adubação verde no rendimento de brócolis (Brassica oleracea L. var. Itálica) cultivado em sucessão ao milho (Zea mays L.). Ciência Rural 34:17391745.Google Scholar
Rosolen, C. A., Foloni, J. S. S. and Tiritan, C. S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research 65:109115.Google Scholar
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. and Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology 156:9971005.CrossRefGoogle ScholarPubMed
Torres, J. L. R., Pereira, M. G. and Fabian, A. J. (2008). Produção de fitomassa por plantas de cobertura e mineralização de seus resíduos em plantio direto. Pesquisa Agropecuária Brasileira 43:421428.CrossRefGoogle Scholar
Trani, P. E., Melo, A. M. T., Passos, F., Tavares, M., Nagai, H., Scivittaro, . (1996). Hortaliças, In Recomendações de Adubação e Calagem para o Estado da São Paulo, Campinas – SP, 157164 (Eds van Raij, B., Cantarella, H., Quaggio, J. S. and Furlani, A. M. C.). Boletim Técnico 100: IAC.Google Scholar
Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology 127:390397.CrossRefGoogle Scholar
Villa, W., Groppo, G. A., Tessarioli Neto, J. and Gelmini, G. A. (2001). Cultura da Melancia. Boletim Técnico 243: CATI, 35 pp.Google Scholar
Wang, Q., Klassen, W., Li, Y. and Codallo, M. (2009). Cover crops and organic mulch to improve tomato yields and soil fertility. Agronomy Journal 101:345351.Google Scholar
Williams, S. M. and Weil, R. R. (2004). Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Science Society of America Journal 68:14031409.Google Scholar
Wolf, D. W., Topoleski, D. T., Gundersheim, N. A. and Ingall, B. A. (1995). Growth and yield sensitivity of four vegetable crops to soil compaction. Journal of the American Society for Horticultural Science 120:956963.Google Scholar
Yau, S. K., Sidahmed, M. and Haidar, M. (2010). Conservation versus conventional tillage on performance of three different crops. Agronomy Journal 102:269276.Google Scholar
Zuazo, V. H. D. and Pleguezuelo, C. R. R. (2008). Soil-erosion and runoff prevention by plant covers. A review. Agronomy Sustainable Development 28:6586.Google Scholar