Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T11:49:47.060Z Has data issue: false hasContentIssue false

Simulation of the Seed Bank Dynamics of Orobanche crenata Forsk. in some Crop Rotations Common in Northern Syria

Published online by Cambridge University Press:  03 October 2008

H. Schnell*
Affiliation:
Institute for Plant Production in the Tropics and Subtropics, University of Hohenheim-380, 70593 Stuttgart, Germany
M. Kunisch
Affiliation:
Institute for Plant Production in the Tropics and Subtropics, University of Hohenheim-380, 70593 Stuttgart, Germany
M. C. Saxena
Affiliation:
International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466 Aleppo, Syria
J. Sauerborn
Affiliation:
Institute for Plant Production in the Tropics and Subtropics, University of Hohenheim-380, 70593 Stuttgart, Germany
*
Koenigheimer Str. 34, 97941 Tauberbischofsheim, Germany.

Summary

Simulations of the dynamics of the seed bank of Orobanche crenata Forsk. under different crop rotations are presented. Rotations studied involved four host species, lentil (Lens culinaris Medik.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.) and woolly-pod vetch (Vicia villosa subsp. dasycarpa (Ten.) Cavill.), and non-host species. Simulation showed that the Orobanche seed bank dynamics in three-course crop rotations would result in a high Orobanche seed population and hence in low yields of the respective crops. Replacing the susceptible by resistant legumes such as woolly-pod vetch in some of the cycles of the rotations would keep the Orobanche infestation at a low level without reducing the proportion of legumes. A three-course crop rotation with faba bean would have to be changed to a 12-coursc rotation in which faba bean was grown every twelfth year but was replaced by woolly-pod vetch or other resistant legumes in seasons 3, 6, 9; 15, 18, 21; and so on. In the three-course rotations with chickpea or lentil, these susceptible legumes would be grown every ninth year but would have to be replaced in seasons 3 and 6; 12 and 15; 21 and 24; and so on, thus changing these three-course rotations into nine-course rotations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellar, M. & Kebabeh, S. (1983). Pests and diseases. A list of diseases, injuries and parasitic weeds of lentils in Syria (survey 1979–1980). Lens Newsletter 10:3031.Google Scholar
Kadry, A. R. & Tewfic, H. (1956). Seed germination in Orobanche crenata Forsk. Svensk Bolanisk Tidsrift 50:270286.Google Scholar
Keatinge, J. D. H., Dennett, M. D. & Rodgers, J. (1985). The influence of precipitation regime on the management of three-course crop rotations in Northern Syria. Journal of Agricultural Science, Cambridge 104:281287.Google Scholar
Kunisch, M. (1988) Einbeziehung mathematischer Modelle in die Beschreibung unkrautbiologischer Zusammenhänge am Beispiel von Chenopodium album L., Echinochloa crus-galli (L.) P. B. und Echinochloa colonum (L.) Link. PLITS 6(5): 1122. Weikersheim, Germany: Margraf Verlag.Google Scholar
Kunisch, M., Linke, K.-H., Richter, O. & Koch, W. (1991). Inclusion of conceptual modelling in studies on the population dynamics of the genus Striga. Angewandte Botanik 65:4557.Google Scholar
Linke, K.-H., (1992). Biology and control of Orobanche in legume crops. PLITS 10(2) 162. Weikersheim, Germany: Margraf Verlag.Google Scholar
Linke, K.-H. & Vogt, W. (1987). A method and its application for observing germination and early development of Striga (Scrophulariaceae) and Orobanche (Orobanchaceae). In: Proceedings of the 4th International Symposium on Parasitic Weeds, 501509 (Eds Weber, H. Chr. and Forstreuter, W.) Marburg: H. Chr Weber and W. Forstreuter.Google Scholar
Linke, K.-H., Sauerborn, J. & Saxena, M. C. (1991). Host-parasite relationships: effect of Orobanche crenata seed banks on development of the parasite and the yield of faba bean. Angewandte Botanik, 65:229238.Google Scholar
Linke, K.-H., Abd, El-Moneim & Saxena, M. C. (1993). Variation in resistance of some forage legumes species to Orobanche crenata Forsk. Field Crops Research 32:277285.CrossRefGoogle Scholar
Oram, P. & Belaid, A. (1990). Legumes in Farming Systems. A Joint ICARDA/IFPRI Report. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas.Google Scholar
Rauber, R. (1978). Möglichkeiten der Erarbeitung von Modellen zur Befallsprognose bei Unkräutern, dargelegt am Beispiel von Flughafer (Avena fatua L.) in Getreide. PhD Thesis, University of Hohenheim, Germany.Google Scholar
Richter, O. (1985). Simulation des Verhaltens ökologischer Systeme. Weinheim, Germany: VCH Publishers.Google Scholar
Sauerborn, J. (1991). Parasitic Flowering Plants. Weikersheim, Germany: Margraf Verlag.Google Scholar
Schnell, H. (1993). Aspekte zur Kontrolle von Orobanche crenata Forsk. in Nordsyrien durch Fruchtfolgemaßnahmen unter Berücksichtigungder Dynamik der Orobanche-Samenpopulation im Boden. PLITS 11(2) 1112. Weikersheim, Germany: Margraf Verlag.Google Scholar
Schnell, H., Linke, K.-H. & Sauerborn, J. (1994). Trap cropping and its effect on yield and Orobanche crenata Forsk. infestation on following pea (Pisum sativum L.) crops. Tropical Science 34: 306314.Google Scholar
Teng, P. S. (1981). Validation of computer models of plant disease epidemics: a review of philosophy and methodology. Journal of Plant Dis. Prol. 88: 4963.Google Scholar
Vetter, H. (1963). Probleme und Crenzen einseitiger Fruchtfolgen. Schriftenreihe der landwirtschaftlichen Fakultät der Chr. Albrechts-Universität, 35. Kiel: Chr Albrecht University.Google Scholar