Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T00:46:06.877Z Has data issue: false hasContentIssue false

SELENIUM FORTIFICATION AND PRO/ANTI OXIDANT RESPONSES IN ALLIUM CEPA (ONION) CULTIVATED IN Se SUPPLEMENTED SOILS

Published online by Cambridge University Press:  21 July 2010

N. TEJO PRAKASH*
Affiliation:
Department of Biotechnology and Environmental Sciences, Thapar University, Patiala – 147004, India
NEETU SHARMA
Affiliation:
Department of Biotechnology and Environmental Sciences, Thapar University, Patiala – 147004, India
RANJANA PRAKASH
Affiliation:
School of Chemistry and Biochemistry, Thapar University, Patiala – 147004, India
T. N. NATHANIEL
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
R. ACHARYA
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
A. V. R. REDDY
Affiliation:
Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
*
Corresponding author. [email protected]

Summary

Native plantlets of Allium cepa (onion) were cultivated in selenium (Se)-supplemented soils to observe dose- and time-dependent uptake and associated pro/anti-oxidant activity. Allium plantlets were grown in soils supplemented with Se at 2.5, 5.0 and 7.5 mg kg−1 as selenite (Na2SeO3) and selenate (Na2SeO4) for 40–120 days. The effect of different concentrations of Se oxyanions on the growth and accumulation profile in plants in relation to glutathione peroxidase activity and thiobarbituric acid reactive substances was studied. Total Se concentrations in plantlets were determined by instrumental neutron activation analysis. The accumulation of Se in plant was observed to be dose dependent in the case of selenite, but, no definite correlation between accumulation levels and exposed concentration was observed. The changes in pro/anti-oxidant properties were observed to be dependent on the accumulation of Se in plant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cartes, P., Shene, S. and dela Luz Mora, M. (2006). Selenium distribution in ryegrass and its antioxidant role as affected by sulphur fertilization. Plant and Soil 285: 187195.Google Scholar
Dalton, C. and Bird, P. (2003). Risk assessment for the consumption of fish with elevated selenium levels. NSW Public Health Bulletin 14: 174176.CrossRefGoogle ScholarPubMed
De Souza, M. P., Pilon-Smits, E. A. H., Lytle, C. M., Hwang, S., Tai, J., Honma, T. S. U., Yeh, L. and Terry, N. (1998) Rate limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiology 117: 14871494.Google Scholar
Feist, L. J. and Parker, D. R. (2001). Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytologist 149: 6169.CrossRefGoogle ScholarPubMed
Flohe, L. and Gunzler, W. A. (1984) Assays of glutathione peroxidase. In Methods in Enzymology, 114121 (Eds. Packer, L.). New York: Academic Press.Google Scholar
Germ, M., Stibilj, V. and Kreft, I. (2007) Effect of selenium foliar application on chicory (Chicorium intybus L.). Journal of Agricultural and Food Chemistry 55: 795798.CrossRefGoogle Scholar
Gupta, U. C. and MacLeod, J. A. (1994). Effect of various sources of selenium fertilization on the selenium concentration of feed crops. Canadian Journal of Soil Science 74: 285290.CrossRefGoogle Scholar
Hanson, B., Pilon-Smits, E. A. H., Garifullina, G. F., Lindblom, S. D. and Lawrence, B. C. (2003). Selenium accumulation protects Brassica juncea from invertebrate hervivory and fungal infection. New Phytologist 159: 461469.CrossRefGoogle ScholarPubMed
Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. The Science of the Total Environment 326: 131.CrossRefGoogle ScholarPubMed
Hartikainen, H., Xue, T. and Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in rye grass. Plant and Soil 225: 193200.CrossRefGoogle Scholar
Huang, K. X., Lauridsen, E. and Clausen, J. (1994). Selenium-containing peroxidases of germinating barley. Biological Trace Element Research 46: 173182.CrossRefGoogle ScholarPubMed
Hu, Q., Xu, J. and Pan, G. (2001). Effect of selenium spraying on green tea quality. Journal of the Science of Food and Agriculture 81: 13871390.Google Scholar
Ip, C. and Lisk, D. J. (1995). Efficacy of cancer prevention by high selenium garlic is primarily dependent on the action of selenium. Carcinogenesis 16: 26492652.Google Scholar
Kahakachchi, C., Boakye, H. T., Uden, P. C. and Tyson, J. F. (2004). Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. Journal of Chromatography A 1054: 303312.CrossRefGoogle ScholarPubMed
Kápolna, E. and Fodor, P. (2007). Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. International Journal of Food Science and Nutrition 58: 282296.Google Scholar
Klapec, T., Mandic, M. L., Grgic, J., Primorac, L. J., Perl, A. and Krstanovıc, V. (2004). Selenium in selected foods grown or purchased in East Croatia. Food Chemistry 85: 445452.CrossRefGoogle Scholar
MacDonald-Wicks, L. K., Wood, L. G. and Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: A review. Journal of the Science of Food and Agriculture 86: 20462056.CrossRefGoogle Scholar
McNaughton, S. A. and Marks, G. C. (2002). Selenium content of Australian foods: A review of literature values. Journal of Food Composition and Analysis 15: 169182.CrossRefGoogle Scholar
McSheehy, S., Pannier, F., Szpunar, J., Potin-Gautier, M. and Lobinski, R. (2002). Speciation of selenium compounds in yeast aqueous extracts by three-dimensional liquid chromatography with inductively coupled plasma mass spectrometric and electrospray mass spectrometric detection. Analyst 127: 223229.Google Scholar
Miller, D. M. and Aust, S. D. (1989). Studies of ascorbate-dependent, iron catalyzed lipid peroxidation. Journal of Biochemical and Biophysical Methods 271: 113119.Google Scholar
Pedrero, Z., Madrid, Y., Hartikainen, H. and Camara, C. (2008). Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. Journal of Agricultural and Food Chemistry 56: 266271.CrossRefGoogle ScholarPubMed
Rios, J. J., Rosales, M. A., Blasco, B., Cervilla, L. M., Romero, L., and Ruiz, J. M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae 116: 248255.CrossRefGoogle Scholar
Rosales, M. A., Ruiz, J. M., Hernandez, J., Soriano, T., Castilla, N. and Romero, L. (2006). Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture 86: 15451551.CrossRefGoogle Scholar
Shah, M., Kannamkumarath, S. S., Wuilloud, J. C. A., Wuilloud, R. G. and Caruso, J. A. (2004). Identification and characterization of selenium species in enriched green onion (Allium fistulosum) by HPLC-ICP-MS and ESI-ITMS. Journal of Analytical Atomic Spectrometry 19: 381386.Google Scholar
Shanker, A. K. (2006). Countering UV-B stress in plants: does selenium have a role? Plant and Soil 282: 2126.CrossRefGoogle Scholar
Sharma, N., Prakash, R., Srivastava, A., Sadana, U. S., Acharya, R., Prakash, N. T. and Reddy, A. V. R. (2009). Profile of selenium in soil and crops in seleniferous area of Punjab, India by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 281: 5962.CrossRefGoogle Scholar
Smrkolj, P., Germ, M., Kreft, I. and Stibilj, V. (2006). Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. Journal of Experimental Botany 57: 35953600.CrossRefGoogle ScholarPubMed
Ventura, M. C., Freitas, M., Pacheco, A., Meerten, T. V., and Wolterbeek, H. T. (2007). Selenium content in selected Portuguese foodstuffs. European Food Research and Technology 224: 395401.CrossRefGoogle Scholar
Whanger, P. D., Ip, C., Polan, C. E., Uden, P. C. and Welbaum, G. (2000) Tumorigenesis, metabolism, speciation, bioavailability, and tissue deposition of selenium in selenium-enriched ramps (Allium tricoccum). Journal of Agricultural and Food Chemistry 4: 57235730.Google Scholar
Wrobel, K., Kannamkumarath, S. S., Caruso, J. A., Wysocka, I. A., Bulska, E., Swiatek, J. and Wierzbicka, M. (2004). HPLC-ICP-MS speciation of selenium in enriched onion leaves – a potential dietary source of Se-methylselenocysteine. Food Chemistry 86: 613623.CrossRefGoogle Scholar
Xue, T., Hartikainen, H. and Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237: 5561.CrossRefGoogle Scholar
Zar, G. (2006). Biostatistical Analysis, India: Pearson-Education.Google Scholar