Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T17:48:46.476Z Has data issue: false hasContentIssue false

ORGANIC VERSUS SYNTHETIC FERTILISATION OF BEANS (PHASEOLUS VULGARIS L.) IN MEXICO

Published online by Cambridge University Press:  11 February 2015

ADOLFO DAGOBERTO ARMENTA-BOJÓRQUEZ*
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa; Blvd. Juan de Dios Bátiz Paredes No. 250, C.P. 81101, Guasave, Sinaloa, Mexico
HUGO RUBILI ROBLERO-RAMÍREZ
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa; Blvd. Juan de Dios Bátiz Paredes No. 250, C.P. 81101, Guasave, Sinaloa, Mexico
JESÚS RICARDO CAMACHO-BÁEZ
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa; Blvd. Juan de Dios Bátiz Paredes No. 250, C.P. 81101, Guasave, Sinaloa, Mexico
MANUEL MUNDO-OCAMPO
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa; Blvd. Juan de Dios Bátiz Paredes No. 250, C.P. 81101, Guasave, Sinaloa, Mexico
CIPRIANO GARCÍA-GUTIÉRREZ
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa; Blvd. Juan de Dios Bátiz Paredes No. 250, C.P. 81101, Guasave, Sinaloa, Mexico
ALMA ARMENTA-MEDINA
Affiliation:
Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Mexico
*
§Corresponding author. Email: [email protected]

Summary

Phaseolus vulgaris is considered an inefficient nitrogen fixer, and therefore farmers in Mexico use large quantities of synthetic nitrogen fertilisers. The aim of this research was to evaluate the performance of native isolates of Rhizobium spp. and Bacillus spp. as biological fertilisers in northern Mexico. A first test was carried out under greenhouse conditions to analyse 15 native isolates of Rhizobium and 15 native isolates of Bacillus. Based on their effects on the bean crop, the best treatments were tested under field conditions. In the field, the combination of Rhizobium and Bacillus (Rz + Bs) produced the highest grain yield, biomass production, number of nodules per plant and dry weight of nodules, statistically surpassing (p ≤ 0.05) the control (without inoculation and fertilisation). Furthermore, compared with synthetic fertilisation, no statistical differences were found, which suggests that the combination Rz + Bs can replace synthetic fertilisation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, T. E. H. M., Elhassan, G. A., Abdelgani, M. E. and Abdalla, A. S. (2011). Effect of Rhizobium and Bacillus strains on the growth, symbiotic properties and nitrogen and phosphorus content of lablab bean (Lablab purpureus L.). Advances Environmental Biology 5 (1):2430.Google Scholar
Buttery, B. R., Park, S. J. and Findlay, W. I. (1986). Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium . Canadian Journal of Plant Science 672:425432.Google Scholar
Camacho, M., Santamaría, C., Temprano, F., Rodriguez-Navarro, D. N. and Daza, A. (2001). Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Canadian Journal of Microbiology 47:10581062.Google Scholar
Den Herder, G. and Parniske, M. (2009). The unbearable naivety of legumes in symbiosis. Current Opinion in Plant Biology 12:491499.CrossRefGoogle ScholarPubMed
Egamberdieva, D., Berg, G., Lindström, K. and Räsänen, L. A. (2010). Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology 46:269272.Google Scholar
Figueiredo, M. V. B., Martinez, C. R., Burity, H. A. and Chanway, C. P. (2008). Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology and Biotechnology 24:11871193.Google Scholar
Gaines, P. T. and Mitchell, A. G. (1979). Chemical Methods for Soil and Plant Analysis. University of Georgia, Coastal Plain Station, Tifton, USA:105.Google Scholar
Gyaneshwar, P., Kumar, G. N., Parekh, L. J. and Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:8393.Google Scholar
Jensen, H. L. (1942). Nitrogen fixation in leguminous plants. I. General characters of rot-nodule bacteria isolated from species of Medicago and Trifolium in Australia. In Proceedings of The Linnean Society of New South Wales 67, 98108.Google Scholar
Ma, T. S. and Zuazaga, G. (1942). Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Industrial Engineering Chemistry Analytical Edition 14 (3):280282.Google Scholar
Michiels, J., Dombrecht, B., Vermeiren, N., Xi, C., Luyten, E. and Vanderleyden, J. (1998). Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiology Ecology 26:193205.Google Scholar
Rodriguez, H. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17 (4–5):319339.CrossRefGoogle ScholarPubMed
Shweta, B., Maheshwari, D. K., Dubey, R. C., Arora, D. S., Bajpai, V. K. and Kang, S. C. (2008). Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). Journal of Microbiology Biotechnology 18 (9):15781583.Google Scholar
Srinivasan, M., Petersen, D. J. and Holl, F. B. (1997). Influence of indoleacetic-acid producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnobiotic conditions. Canadian Journal of Microbiology 42:10061014.Google Scholar
Tandon, H. L. S, Cescas, M. P. and Tyner, E. H. (1968). An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Science Society America Proceedings 32:4851.CrossRefGoogle Scholar
Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Velazquez, E., Rodriguez-Barrueco, C., Cervantes, E., Chamber, M. and Igual, J. M. (2006). Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287 (1–2):4350.Google Scholar
Verma, J. P., Yadav, J., Tiwari, K. N., Lavakush, and Singh, V. (2010). Impact of plant growth promoting rhizobacteria on crop production. International Journal of Agricultural Research 5 (11):954983.CrossRefGoogle Scholar
Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. International Biological Programme, Blackwell Scientific Publications, Oxford, England (199p).Google Scholar
WHO, (2011). Guidelines for Drinking-Water Quality 4th edn. Geneva, Switzerland, World Health Organization.Google Scholar
Yadegari, M., Asadi, R. H., Noormohammadi, G. and Ayneband, A. (2010). Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. Journal of Plant Nutrition 33 (12):17331743.Google Scholar
Supplementary material: PDF

Armenta-Bojórquez supplementary material

Table S1-S2

Download Armenta-Bojórquez supplementary material(PDF)
PDF 2.2 MB