Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T17:13:50.911Z Has data issue: false hasContentIssue false

CRUDE PROTEIN, AMINO ACID AND ALKALOID CONTENTS OF ANNUAL SWEET LUPIN (LUPINUS SPP. L.) FORAGES AND SEEDS GROWN IN ETHIOPIA

Published online by Cambridge University Press:  27 February 2012

LIKAWENT YEHEYIS*
Affiliation:
Amhara Region Agricultural Research Institute, Debre Birhan Centre, P.O. Box 112, Debre Birhan, Ethiopia Institute of Animal Science, Humboldt University of Berlin, Philippstr. 13, House 9, 10115 Berlin, Germany
C. KIJORA
Affiliation:
Institute of Animal Science, Humboldt University of Berlin, Philippstr. 13, House 9, 10115 Berlin, Germany
E. VAN SANTEN
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849-5412, USA
M. WINK
Affiliation:
Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
JÜRGEN DANIER
Affiliation:
Nutrition and Food Research Center, Technical University of Munich, Alte Akademie 10, D-85350 Freising, Germany
K. J. PETERS
Affiliation:
Institute of Animal Science, Humboldt University of Berlin, Philippstr. 13, House 9, 10115 Berlin, Germany
*
§Corresponding Author. Email: [email protected]

Summary

Though bitter white lupin (Lupinus albus L.) is a traditional crop in Ethiopia, sweet lupins are new to the country. As a result, the nutritional value of low-alkaloid lupins has not been evaluated under Ethiopian conditions. Crude protein, amino acid and alkaloid contents of 16 cultivars of three annual lupin species grown in four lupin growing locations (Merawi, Finoteselam, Kossober-1 and Kossober-2) of Ethiopia were evaluated. Location × cultivar interaction was a significant source of variation for all traits (p < 0.0001). In all locations, blue entries had either similar (p ≥ 0.0584) or higher (p ≤ 0.0235) forage crude protein content than the Local Landrace, white group and yellow entry. Compared with the Local Landrace, white and blue entries, the sole yellow entry had higher (p ≤ 0.0148) seed crude protein content at all locations except at Kossober-2, where it had similar (p = 0.8460) crude protein content as white entries. The Local Landrace had the highest forage and seed alkaloid contents. However, sweet blue Vitabor and Sanabor entries had the lowest forage and seed alkaloid contents, respectively. Low alkaloid and higher crude protein contents of sweet lupins grown in Ethiopia show the possibility to use sweet lupin forage and seeds as cheap home-grown protein source for livestock feed and human food in the country. However, for more reliable information, the laboratory results need to be verified by animal and human evaluations of the crop.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (1990). Official Methods of Chemical Analysis, 15th edn.Arlington, TX, USA: Association of Official Analytical Chemists.Google Scholar
Belay, S. M. (2009). Feed Resources Availability, Cattle Fattening Practices and Marketing System in Bure Woreda, Amhara Region, Ethiopia. M.Sc. thesis, Mekelle University, Mekelle, Ethiopia, 105 pp.Google Scholar
Benin, S., Ehui, S. and Pender, J. (2003). Policies for livestock development in the Ethiopian highlands. Environment, Development and Sustainability 5:491510.CrossRefGoogle Scholar
Bhardwaj, H. L., Starner, D. E. and van Santen, E. (2010). Preliminary evaluation of white lupin (Lupinus albus L.) as a forage crop in the Mid-Atlantic regions of the United States of America. Journal of Agricultural Science 2 (4):1317.CrossRefGoogle Scholar
Bogale, S. (2004). Assessment of livestock production systems and feed resource base in Sinana Dinsho District of Bale Highlands, Southeast Oromia. M.Sc. thesis, Alemaya University of Agriculture, Alemaya, Ethiopia, 141 pp.Google Scholar
Bruno-Soares, A. M., Campos-Andrada, M. P., Falcao, E. and Cunha, L. (1999). An evaluation of the chemical composition and rumen degradability of a new Portuguese Lupinus luteus L. cultivar. In Towards the 21st century. Proceedings of the 8th International Lupin Conference, Asilomar, CA, USA, 11–16 May, 115–119 (Ed. Hill, G. D.), Canterbury, New Zealand: International Lupin Association.Google Scholar
Bruno-Soares, A. M. and Vaz, M. M. M. (1999). Nutritive value of white and blue lupin forages at different stages of plant growth and the relationship to alkaloid and saponin contents. In Lupin, An Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 411–413 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
Campos-Andrada, M. P., Santana, F. M. C., Felgueiras, I., Mimoso, M. J. and Empis, J. M. A. (1999). Nutritional value of Lupinus angustifolius and L. cosentinii accessions with diverse genetic origin. In Lupin, an Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 414–418 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
Carey, D. B. and Wink, M. (1994). Elevational variation of quinolizidine alkaloid contents in a lupin (Lupinus argenteus) of the rocky mountains. Journal of Chemical Ecology 20:849857.CrossRefGoogle Scholar
Christiansen, J. L., Jornsgard, B., Buskov, S. and Olsen, C. E. (1997). Effect of drought stress on content and composition of seed alkaloids in narrow-leafed lupin Lupinus angustifolius L. European Journal of Agronomy 7:307314.CrossRefGoogle Scholar
Cole, D. J. A. and Van Lunen, T. A. (1994). Ideal amino acid patterns. In Amino Acids in Farm Animal Nutrition (Ed. D'Mello, J. P. F.). Wallingford, UK: CAB International.Google Scholar
Erbas, M., Certel, M. and Uslu, M. K. (2005). Some chemical properties of white lupin seeds (Lupinus albus L.). Journal of Food Chemistry 89:341345.CrossRefGoogle Scholar
Flis, M., Zdunczyk, Z. and Juskiewicz, J. (1999). Composition of whole and dehulled seeds of yellow and white lupin. In Lupin, An Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 422–424 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
Gdala, J., Smulikowska, S., Zdunczyk, Z. and Pastuszewska, B. (1999). Nutrients and anti-nutrients in three lupin species grown in Poland. In Lupin, An Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 425–431 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
Gilbert, C. and Acamovic, T. (1999). The nutritional value of two British grown cultivars of Lupinus albus for broiler chicken. In Lupin, An Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 400–402 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
Gremigni, P., Hamblin, J., Harris, D. and Cowling, W. A. (2003). The interaction of phosphorous and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius L.). Plant and Soil 253:413427.CrossRefGoogle Scholar
Gross, R. (1988). Lupins in human nutrition. In Proceedings of the 5th International Lupin Conference, 5–8 July, 5163 (Ed. Twardowski, T.). Poland: Poznan.Google Scholar
Lulseged, G. and Jamal, M. (1999). The potential of crop residues, particularly wheat straw, as livestock feed in Ethiopia. In Farmers, Their Animals and the Environment (ILRI on disc). Nairobi, Kenya: FAO/ILRI.Google Scholar
Maknickiene, Z. and Asakaviciute, R. (2010). Research on low-alkaloid concentration in cultivars of lupin (Lupinus sp.) in Lithuania. General and Applied Plant Physiology 36 (3–4):204211.Google Scholar
Naumann, C. and Bassler, R. (1997). Die Chemiche Untersuchung von Futtermitteln. Methodenbuch, Band III, Ergänzungen 1993 (The Chemical Analysis of Feeds. Book of Methods, Vol. 3). Darmstadt, Germany: VDLUFA, Verlag.Google Scholar
Norton, B. W. and Poppi, D. P. (1995). Composition and nutritional attributes of pasture legumes. In Tropical Legumes in Animal Nutrition, 2346 (Eds. D'Mello, J. P. F. and Devendra, C.). Wallingford, UK: CAB International.Google Scholar
Roth-Maier, D. A. (1999). Utilization of lupin in animal nutrition. In Lupin, An Ancient Crop for the New Mellenium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June, 394399 (Eds. van Santen, E., Wink, M., Weissmann, S. and Roemer, P.). Canterbury, New Zealand: International Lupin Association, ISBN 0-86476-123-6.Google Scholar
SAS (2003). Statistical Analysis System, Version 9.2.2. Cary, NC, USA: SAS Institute.Google Scholar
Sujak, A., Kotlarz, A. and Strobel, W. (2006). Compositional and nutritional evaluation of several lupin seeds. Food Chemistry 98:711719.CrossRefGoogle Scholar
Van Soest, P. J. (1994). Nutritional Ecology of Ruminants, 2nd edn.Ethaca, NY, USA: Cornell University Press.CrossRefGoogle Scholar
Vilarino, M. del. P. and Ravetta, D. A. (2007). Tolerance to herbivory in lupin genotypes with different alkaloid concentration: interspecific differences between Lupinus albus L. and L. angustifolius L. Environmental and Experimental Botany 63:130136.CrossRefGoogle Scholar
Vilarino, M. del P., Maregianni, G., Grass, M. Y., Leicach, S. R. and Ravetta, D. A. (2005). Post-damage alkaloid concentration in sweet and bitter varieties and its effect on subsequent herbivory. Journal of Applied Entomology 129 (5):233238.CrossRefGoogle Scholar
Wasilewko, J. and Buraczewska, L. (1999). Chemical composition including contents of aminoacids, minerals and alkaloids in seeds of three lupin species cultivated in Poland. Journal of Animal Feed Science 8:112.CrossRefGoogle Scholar
Wink, M. (1993). Quinolizidine alkaloids. In Methods in Plant Biochemistry, 197239 (Ed. Waterman, P.). London: Academic Press.Google Scholar
Wink, M. (2008). Ecological roles of alkaloids. In Modern Alkaloids; Structure, Isolation, Synthesis and Biology, 324 (EdsFattorusso, E. and Taglialatela-Scafati, O.). KGaA, Weinheim, Germany: Wiley-WCH Verlag GmbH.Google Scholar
Wink, M., Meißner, C. and Witte, L. (1995). Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry (Oxf) 38:139153.CrossRefGoogle Scholar
Yeheyis, L., Kijora, C., Wink, M. and Peters, K. J. (2011). Effect of a traditional processing method on chemical composition of local white lupin (Lupinus albus L.) seed in North-Western Ethiopia. Zeitschrift für Naturforschung 66c (in press).Google Scholar
Yeheyis, L., Kijora, C., van Santen, E. and Peters, K. J. (2012). Sweet annual lupins (Lupinus spp.); their adaptability and productivity in different agro-ecological zones of Ethiopia. Journal of Animal Science Advances 2 (2): 201215.Google Scholar
Zulak, K. G., Liscombe, D. K., Ashihara, H. and Facchini, P. J. (2006). Alkaloids. In Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet, 102136 (Eds. Crozier, A., Clifford, M. N. and Ashihara, H.). Oxford, UK: Blackwell.CrossRefGoogle Scholar