Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T16:02:59.513Z Has data issue: false hasContentIssue false

Controlled release urea increases soybean yield without compromising symbiotic nitrogen fixation

Published online by Cambridge University Press:  09 January 2023

Clovis Pierozan Junior
Affiliation:
Federal Institute of Education Science and Technology of Paraná, Palmas, PR, Brazil
José Laércio Favarin
Affiliation:
Crop Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP 11, Brazil
João Leonardo Corte Baptistella*
Affiliation:
Crop Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP 11, Brazil
Rodrigo Estevam Munhoz de Almeida
Affiliation:
Embrapa Pesca e Aquicultura, Palmas, TO, Brazil
Silas Maciel de Oliveira
Affiliation:
Department of Agronomy, State University of Maringá, Maringá, PR, Brazil
Bruno Cocco Lago
Affiliation:
Crop Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP 11, Brazil
Tiago Tezotto
Affiliation:
Soil Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP 11, Brazil
*
*Corresponding author. Email: [email protected]

Summary

In Brazil, high-yield soybean [Glycine Max (L). Merrill] – corn (Zea mays L.) double cropping system might be nitrogen (N)-limited and additional N fertilization can be beneficial. Early application of N in soybean reduces the symbiotic N fixation (SNF) efficiency and/or establishment. One alternative to avoid SNF impairment is to apply N between the beginning pod (R3) and seed-fill (R5) stages through the use of controlled release fertilizers. In this study, N was applied at 50 kg ha−1 as common urea (CU) or controlled release urea (CRU) with different lag periods until N release starts (30 days, 60 days, or 1:1 mix of both lag times) in a randomized complete blocks design with six treatments and four replicates under tropical and subtropical conditions. CU was applied after soybean emergence (VE) or at the beginning pod (R3), and CRU only at VE. Using urea labeled with 15N isotope, we analyzed the N source used by soybean (fertilizer, soil, or SNF) and SNF parameters. On average, CRU – 30 days, CRU – 1:1 mix (30 + 60 days) and CU applied at the R3 stage increased grain yield by 9.2% (354 kg ha−1) compared to the control. N derived from all fertilizer treatment were almost 35 kg N ha−1, a high N recovery efficiency of 68%. The SNF was not impaired by CU and CRU and accounted for 71% (220 kg N ha−1) of total N uptake. In the conditions of the experiments, fertilization of 50 kg N ha−1 as CRU was shown to be effective to supply N in late soybean demand (R3 stage), increasing yield without damaging the SNF process in high-yield environments.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banzato, D.A. and Kronka, S.N. (2006). Experimentação Agrícola, 4th Edn. Jaboticabal: FUNEP.Google Scholar
Barrie, A. and Prosser, S.J. (1996). Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. In Boutton, T.W. and Yamasaki, SI (eds), Mass Spectrometry of Soils. New York: Marcel Dekker, pp. 146.Google Scholar
Benjamin, J.G. and Nielsen, D.C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research 97, 248253. https://doi.org/10.1016/j.fcr.2005.10.005 CrossRefGoogle Scholar
Bortoletto-Santos, R., Guimarães, G.G.F., Junior, V.R., Da Cruz, D.F., Polito, W.L. and Ribeiro, C. (2020). Biodegradable oil-based polymeric coatings on urea fertilizer: N release kinetic transformations of urea in soil. Science Agriculture 77, 19. https://doi.org/10.1590/1678-992x-2018-0033 Google Scholar
Cafaro La Menza, N., Monzon, J.P., Lindquist, J.L., Arkebauer, T.J., Knops, J.M.H., Unkovich, M., Specht, J.E. and Grassini, P. (2020). Insufficient nitrogen supply from symbiotic fixation reduces seasonal crop growth and nitrogen mobilization to seed in highly productive soybean crops. Plant, Cell & Environment 43, 19581972. https://doi.org/10.1111/pce.13804 CrossRefGoogle ScholarPubMed
Cafaro La Menza, N., Monzon, J.P., Specht, J.E. and Grassini, P. (2017). Is soybean yield limited by nitrogen supply? Field Crops Research 213, 204212. https://doi.org/10.1016/j.fcr.2017.08.009 CrossRefGoogle Scholar
Cataldo, D.A., Maroon, M., Schrader, L.E. and Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6, 7180.CrossRefGoogle Scholar
Ciampitti, I.A. and Salvagiotti, F. (2018). New insights into soybean biological nitrogen fixation. Agronomy Journal 110, 11851196. https://doi.org/10.2134/agronj2017.06.0348 CrossRefGoogle Scholar
Conab (2022). Acompanhamento da safra brasileira de grãos: Décimo primeiro levantamento, agosto/ 2022 – safra 2021/22. Brasília: Conab, p. 89.Google Scholar
Craft, J.C., Lindsey, L.E., Barker, D.J. and Lindsey, A.J. (2019). Quantification of soybean leaf senescence and maturation as impacted by soil- and foliar- applied nitrogen. Crop, Forage & Turfgrass Management: List of Issues 5, 18. https://doi.org/10.2134/cftm2018.07.0051 CrossRefGoogle Scholar
De Oliveira, S.M., Estevam, R., De Almeida, M., Ciampitti, A., Junior, C.P., Lago, B.C., Cesar, P. and Trivelin, O. (2018). Understanding N Timing in Corn Yield and Fertilizer N Recovery: An Insight from an Isotopic Labeled-N Determination. PLoS ONE 13, 114.Google Scholar
de Oliveira, S.M., Pierozan, J.C., Lago, B.C., de Almeida, R.E.M., Trivelin, P.C.O. and Favarin, J.L. (2019). Grain yield, efficiency and the allocation of foliar N applied to soybean canopies. Science Agriculture 76, 305310. https://doi.org/10.1590/1678-992x-2017-0395 Google Scholar
de Souza, D.M.a.G. and Lobato, E. (2004). Cerrado: correção de solo e adubação. Brasília: Embrapa Informação Tecnológica, p. 416.Google Scholar
dos Santos Cordeiro, C.F. and Echer, F.R. (2019). Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Scientific Reports 9, 111. https://doi.org/10.1038/s41598-019-52131-7 Google Scholar
Embrapa (2013). Tecnologias de produção de soja: região central do Brasil 2014. Londrina: Embrapa Soja, p. 265.Google Scholar
Fabre, F. and Planchon, C. (2000). Nitrogen nutrition, yield and protein content in soybean. Plant Science 152, 5158. https://doi.org/10.1016/S0168-9452(99)00221-6 CrossRefGoogle Scholar
Fehr, W.R. and Caviness, C.E. (1977). Stages of soybean development. Special Report 87, Iowa State University of Science and Technology, pp. 1–11.Google Scholar
Ferreira, A.S., Balbinot Junior, A.A., Werner, F., Zucareli, C., Franchini, J.C. and Debiasi, H. (2016). Plant density and mineral nitrogen fertilization influencing yield, yield components and concentration of oil and protein in soybean grains. Bragantia 75, 362370. https://doi.org/10.1590/1678-4499.479 CrossRefGoogle Scholar
Hatano, S., Fujita, Y., Nagumo, Y., Ohtake, N., Sueyoshi, K., Takahashi, Y., Sato, T., Tanabata, S., Higuchi, K., Saito, A. and Ohyama, T. (2019). Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on the deep placement of nitrogen fertilizers for soybean cultivation. International Journal of Agronomy. https://doi.org/10.1155/2019/9724214 CrossRefGoogle Scholar
Herridge, D.F. (1982). Relative abundance of ureides and nitrate in plant tissues of soybean as a quantitative assay of nitrogen fixation. Plant Physiology 70, 16.CrossRefGoogle ScholarPubMed
Herridge, D.F. (1984). Effects of nitrate and plant development on the abundance of nitrogenous solutes in root-bleeding and vacuum-extracted exudates of soybean 1. Crop Science 24, 173179.CrossRefGoogle Scholar
Herridge, D.F. and Peoples, M.B. (1990). Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiology 93, 495 LP503. https://doi.org/10.1104/pp.93.2.495 CrossRefGoogle ScholarPubMed
Hungria, M., Campo, R.J., Mendes, I.C. and Graham, P.H. (2006a). Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine L. Merr.) in South America. In Singh, R.P., Shankar, N. and Jaiwal, PK (eds), Nitrogen Nutrition and Sustainable Plant Productivity. Houston, TX: Studium Press, LLC, pp. 4393.Google Scholar
Hungria, M., Franchini, J.C., Campo, R.J., Crispino, C.C., Moraes, J.Z., Sibaldelli, R.N.R., Mendes, I.C. and Arihara, J. (2006b). Nitrogen nutrition of soybean in Brazil: contributions of biological N 2 fixation and N fertilizer to grain yield. Canadian Journal of Plant Science 86, 927939. https://doi.org/10.4141/P05-098 CrossRefGoogle Scholar
Hungria, M. and Mendes, I.C. (2015). Nitrogen fixation with soybean: the perfect symbiosis? Biological Nitrogen Fixation 2–2, 10091024. https://doi.org/10.1002/9781119053095.ch99 CrossRefGoogle Scholar
Hungria, M., Nogueira, M.A. and Araujo, R.S. (2015). Alternative methods of soybean inoculation to overcome adverse conditions at sowing. African Journal of Agricultural Research 10, 23292338.Google Scholar
McCoy, J.M., Kaur, G., Golden, B.R., Orlowski, J.M., Cook, D., Bond, J.A. and Cox, M.S. (2018). Nitrogen fertilization of soybean in Mississippi increases seed yield but not profitability. Agronomy Journal 110, 15051512. https://doi.org/10.2134/agronj2017.05.0271 CrossRefGoogle Scholar
Moreno, G., Albrecht, A.J.P., Albrecht, L.P., Junior, C.P., Pivetta, L.A., Tessele, A., Lorenzetti, J.B. and Furtado, R.C.N. (2018). Application of nitrogen fertilizer in high-demand stages of soybean and its effects on yield performance. Australian Journal of Crop Science 12, 1621. https://doi.org/10.21475/ajcs.18.12.01.pne507 CrossRefGoogle Scholar
Mourtzinis, S., Lee, C.D., Shapiro, C.A., Wortmann, C., Holshouser, D., Nafziger, E.D., Kandel, H., Niekamp, J., Orlowski, J.M., Lofton, J., Vonk, J., Roozeboom, K.L., Thelen, K.D., Lindsey, L.E., Staton, M., Naeve, S.L., Casteel, S.N., Conley, S.P., Ross, W.J., Wiebold, W.J., Kaur, G. and Orlowski, J.M. (2018). Soybean response to nitrogen application across the United States: a synthesis-analysis. Field Crops Research 215, 7482. https://doi.org/10.1016/j.fcr.2017.09.035 CrossRefGoogle Scholar
Ortez, O.A., Tamagno, S., Salvagiotti, F., Prasad, P.V.V. and Ciampitti, I.A. (2019). Soybean nitrogen sources and demand during the seed-filling period. Agronomy Journal 111, 17791787. https://doi.org/10.2134/agronj2018.10.0656 CrossRefGoogle Scholar
Picoli, M.M., Pasquetto, J.V.G., Muraoka, C.Y., Milani, K.M.L., Marin, F.B.B., Souchie, E.L., Braccini, A.L., Lazarini, E., Torneli, I.M.B., Cato, S.C. and Tezotto, T. (2022). Combination of Azospirillum and Bradyrhizobium on inoculant formulation improve nitrogen biological fixation in soybean. Journal of Agricultural Science 14, 145155. https://doi.org/10.5539/jas.v14n4p145 CrossRefGoogle Scholar
Pierozan, C., Favarin, J.L., de Almeida, R.E.M., Maciel de Oliveira, S., Lago, B.C. and Trivelin, P.C.O. (2015). Uptake and allocation of nitrogen applied at low rates to soybean leaves. Plant Soil 393, 8394. https://doi.org/10.1007/s11104-015-2468-7 CrossRefGoogle Scholar
Pierozan Junior, C., Favarin, J.L., Lago, B.C., de Almeida, R.E.M., de Oliveira, S.M., Trivelin, P.C.O., Oliveira, F.B. and Gilabel, A.P. (2020). Nitrogen fertilizer recovery and partitioning related to soybean yield. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1007/s42729-020-00322-x CrossRefGoogle Scholar
Pitumpe Arachchige, P.S., Rosso, L.H.M., Hansel, F.D., Ramundo, B., Torres, A.R., Asebedo, R., Ciampitti, I.A. and Jagadish, S.V.K. (2020). Temporal biological nitrogen fixation pattern in soybean inoculated with Bradyrhizobium. Agrosystems Geosciences & Environment 3, 211. https://doi.org/10.1002/agg2.20079 CrossRefGoogle Scholar
Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T. and Weiss, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Research 03, 17.Google Scholar
Santachiara, G., Salvagiotti, F. and Rotundo, J.L. (2019). Nutritional and environmental effects on biological nitrogen fixation in soybean: a meta-analysis. Field Crops Research 240, 106115. https://doi.org/10.1016/j.fcr.2019.05.006 CrossRefGoogle Scholar
Saturno, D.F., Cerezini, P., Moreira da Silva, P., de Oliveira, A.B., de Oliveira, M.C.N., Hungria, M. and Nogueira, M.A. (2017). Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition 40, 16901701. https://doi.org/10.1080/01904167.2017.1310890 CrossRefGoogle Scholar
Soil Survey Staff (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd edn. Washington, DC: Natural Resources Conservation Service. U.S. Department of Agriculture.Google Scholar
Takahashi, Y., Chinushi, T., Nagumo, Y., Nakano, T. and Ohyama, T. (1991). Effect of deep placement of controlled release nitrogen fertilizer (coated urea) on growth, yield, and nitrogen fixation of soybean plants. Soil Science and Plant Nutrition 37, 223231. https://doi.org/10.1080/00380768.1991.10415032 CrossRefGoogle Scholar
Tamagno, S., Balboa, G.R., Assefa, Y., Kovács, P., Casteel, S.N., Salvagiotti, F., García, F.O., Stewart, W.M. and Ciampitti, I.A. (2017). Nutrient partitioning and stoichiometry in soybean: a synthesis-analysis. Field Crops Research 200, 1827. https://doi.org/10.1016/j.fcr.2016.09.019 CrossRefGoogle Scholar
Tewari, K., Onda, M., Ito, S., Yamazaki, A., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, Y., Nagumo, Y., Tsuchida, T. and Ohyama, T. (2006). Comparison of the depth of placement of lime nitrogen on growth, N 2 fixation activity, seed yield and quality of soybean (Glycine max (L.) Merr.) plants. Soil Science and Plant Nutrition 52, 453463. https://doi.org/10.1111/j.1747-0765.2006.00056.x Google Scholar
Tewari, K., Onda, M., Ito, S., Yamazaki, A., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, Y. and Ohyama, T. (2005). 15N analysis of the promotive effect of deep placement of slow-release N fertilizers on growth and seed yield of soybean. Soil Science and Plant Nutrition 51, 885892. https://doi.org/10.1111/j.1747-0765.2005.tb00123.x Google Scholar
Tewari, K., Sato, T., Abiko, M., Ohtake, N., Sueyoshi, K., Takahashi, Y., Nagumo, Y., Tutida, T. and Ohyama, T. (2007). Analysis of the nitrogen nutrition of soybean plants with deep placement of coated urea and lime nitrogen. Soil Science and Plant Nutrition 53, 772781. https://doi.org/10.1111/j.1747-0765.2007.00194.x CrossRefGoogle Scholar
Tewari, K., Suganuma, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Ohyama, T. and Takahashi, Y. (2002). Effect of deep placement of calcium cyanamide, coated urea, and urea on soybean (glycine max (l.) merr.) seed yield in relation to different inoculation methods. Soil Science and Plant Nutrition 48, 855863. https://doi.org/10.1080/00380768.2002.10408712 Google Scholar
Tewari, K., Suganuma, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, Y. and Ohyama, T. (2004). Effect of deep placement of N fertilizers and different inoculation methods of Bradyrhizobia on growth, N2 fixation activity and N absorption rate of field-grown soybean plants. Journal of Agronomy and Crop Science 190, 4658. https://doi.org/10.1046/j.0931-2250.2003.00073.x CrossRefGoogle Scholar
Trenkel, M.E. (2010). Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, 2nd edn. Paris: International Fertilizer Industry Association (IFA).Google Scholar
Van Raij, B., Cantarella, H., Quaggio, J.A. and Furlani, A.M.C. (1997). Recomendação de adubação e calagem para o estado de São Paulo, 2nd edn. Campinas: Campinas, IAC. 285p. (IAC, Boletim técnico, 100).Google Scholar
Yemm, E.W., Cocking, E.C. and Ricketts, R.E. (1955). The determination of amino-acids with ninhydrin. Analyst 80, 209214.CrossRefGoogle Scholar
Young, E.G. and Conway, C.F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry 142, 839853.CrossRefGoogle Scholar
Zapata, F., Danso, S.K.A., Hardarson, G. and Fried, M. (1987). Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology. Agronomy Journal 79, 172176. https://doi.org/10.2134/agronj1987.00021962007900010035x CrossRefGoogle Scholar
Zhu, S., Liu, L., Xu, Y., Yang, Y. and Shi, R. (2020). Application of controlled release urea improved grain yield and nitrogen use efficiency: a meta-analysis. PLoS One 15. https://doi.org/10.1371/journal.pone.0241481 CrossRefGoogle ScholarPubMed
Supplementary material: File

Pierozan Junior et al. supplementary material

Figures S1-S2

Download Pierozan Junior et al. supplementary material(File)
File 163.7 KB