Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T22:07:32.917Z Has data issue: false hasContentIssue false

Understanding Life: A Bioinformatics Perspective

Published online by Cambridge University Press:  20 December 2016

Natalia Szostak
Affiliation:
Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland. European Centre for Bioinformatics and Genomics, Piotrowo 2, 60-965 Poznan, Poland.
Szymon Wasik
Affiliation:
Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland. E-mail: [email protected] European Centre for Bioinformatics and Genomics, Piotrowo 2, 60-965 Poznan, Poland.
Jacek Blazewicz
Affiliation:
Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland. E-mail: [email protected] European Centre for Bioinformatics and Genomics, Piotrowo 2, 60-965 Poznan, Poland.

Abstract

According to some hypotheses, from a statistical perspective the origin of life seems to be a highly improbable event. Although there is no rigid definition of life itself, life as it is, is a fact. One of the most recognized hypotheses for the origins of life is the RNA world hypothesis. Laboratory experiments have been conducted to prove some assumptions of the RNA world hypothesis. However, despite some success in the ‘wet-lab’, we are still far from a complete explanation. Bioinformatics, supported by biomathematics, appears to provide the perfect tools to model and test various scenarios of the origins of life where wet-lab experiments cannot reflect the true complexity of the problem. Bioinformatics simulations of early pre-living systems may give us clues to the mechanisms of evolution. Whether or not this approach succeeds is still an open question. However, it seems likely that linking efforts and knowledge from the various fields of science into a holistic bioinformatics perspective offers the opportunity to come one step closer to a solution to the question of the origin of life, which is one of the greatest mysteries of humankind. This paper illustrates some recent advancements in this area and points out possible directions for further research.

Type
In Honour of Erol Gelenbe
Copyright
© Academia Europaea 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J., Gu, J., Nguyen, M.T., Springsteen, G. and Leszczynski, J. (2013) From formamide to adenine: a self-catalytic mechanism for an abiotic approach. Journal of Physical Chemistry B, 117, pp. 1403914045.Google Scholar
2. Markvoort, A.J., Sinai, S. and Nowak, M.A. (2014) Computer simulations of cellular group selection reveal mechanism for sustaining cooperation. Journal of Theoretical Biology, 357, pp. 123133.Google Scholar
3. Takeuchi, N. and Hogeweg, P. (2012) Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life. Physics of Life Review, 9, pp. 219263.Google Scholar
4. Shay, J.A., Huynh, C. and Higgs, P.G. (2015) The origin and spread of a cooperative replicase in a prebiotic chemical system. Journal of Theoretical Biology, 364, pp. 249259.Google Scholar
5. Ma, W. and Hu, J. (2012) Computer simulation on the cooperation of functional molecules during the early stages of evolution. PloS One, 7, e35454.CrossRefGoogle ScholarPubMed
6. Benner, S.A. (2010) Defining life. Astrobiology, 10, pp. 10211030 (2010).Google Scholar
7. Fenomen życia w ujęciu interdyscyplinarnym: teksty wykładów wygłoszonych na sympozjum naukowym zorganizowanym przez Oddział Polskiej Akademii Nauk i Wydział Teologiczny UAM w Poznaniu dnia 2 grudnia 2003 roku. (Ośrodek Wydawnictw Naukowych, 2004).Google Scholar
8. Shannon, C.E. (1948) A mathematical theory of communication. Bell Systems Technology Journal, 27, pp. 379423.Google Scholar
9. Axe, D.D. (200$0) Estimating the prevalence of protein sequences adopting functional enzyme folds. Journal of Molecular Biology, 341, pp. 12951315.CrossRefGoogle Scholar
10. Meyer, S.C. (2010) Signature in the Cell: DNA and the Evidence for Intelligent Design (San Francisco: HarperOne).Google Scholar
11. Bowie, J.U., Reidhaar-Olson, J.F., Lim, W.A. and Sauer, R.T. (1990) Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science, 247, pp. 13061310.Google Scholar
12. Dembski, W.A. (2006) The Design Inference: Eliminating Chance through Small Probabilities (Cambridge, UK: Cambridge University Press).Google Scholar
13. Dembski, W.A. (2006) No Free Lunch: Why Specified Complexity Cannot Be Purchased Without Intelligence (Lanham, Maryland, Stany Zjednoczone: Rowman & Littlefield).Google Scholar
14. Abel, D.L. (2009) The Universal Plausibility Metric (UPM) & Principle (UPP). Theoretical Biology and Medical Modelling, 6, p. 27.CrossRefGoogle ScholarPubMed
15. Eddington, A.S. (2005) The Nature of the Physical World (Whitefish, Montana, USA: Kessinger Publishing, LLC).Google Scholar
16. Kenyon, D.H. (1969) Biochemical Predestination (New York: McGraw Hill Text).Google Scholar
17. Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (New York: Wiley).Google Scholar
18. Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution (Oxford, UK: Oxford University Press).CrossRefGoogle Scholar
19. Cech, T.R. (2012) The RNA Worlds in Context. Cold Spring Harbor Perspectives on Biology, 4, a006742.Google Scholar
20. Crick, F.H. (1968) The origin of the genetic code. Journal of Molecular Biology, 38, pp. 367379.Google Scholar
21. Orgel, L.E. (1968) Evolution of the genetic apparatus. Journal of Molecular Biology, 38, pp. 381393.CrossRefGoogle ScholarPubMed
22. Boyer, S.H. (1968) The genetic code: the molecular basis for genetic expression. American Journal of Human Genetics, 20, pp. 403404.Google Scholar
23. Gesteland, R.F., Cech, T. and Atkins, J.F. (2006) The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World (New York: Cold Spring Harbor Laboratory Press).Google Scholar
24. Woese, C.R. (1967) The Genetic Code: the Molecular Basis for Genetic Expression (New York: Harper & Row).Google Scholar
25. Gesteland, R.F. (1993) The RNA World: The Nature of Modern Rna Suggests a Prebiotic RNA World (New York: Cold Spring Harbor Laboratory Press).Google Scholar
26. Neveu, M., Kim, H.-J. and Benner, S.A. (2013) The ‘strong’ RNA world hypothesis: fifty years old. Astrobiology, 13, pp. 391403.CrossRefGoogle ScholarPubMed
27. The Nobel Foundation (2015) The Nobel Prize in Chemistry 1989. Nobelprize.org. at <http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1989/>..>Google Scholar
28. Forster, A.C. and Symons, R.H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49, pp. 211220.Google Scholar
29. Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. and Bartel, D.P. (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science, 292, pp. 13191325.Google Scholar
30. Diener, T.O. (1971) Potato spindle tuber ‘virus’: IV. A replicating, low molecular weight RNA. Virology, 45, pp. 411428.CrossRefGoogle Scholar
31. Flores, R., Gago-Zachert, S., Serra, P., Sanjuán, R. and Elena, S.F. (2014) Viroids: Survivors from the RNA World? Annual Review of Microbioogy, 68, pp. 395414.Google Scholar
32. Ruiz-Mirazo, K., Briones, C. and de la Escosura, A. (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chemical Reviews, 114, pp. 285366.Google Scholar
33. Eigen, M. and Schuster, P. (1979) The Hypercycle (Berlin, Heidelberg: Springer)Google Scholar
34. Schuster, P. (2011) Mathematical modeling of evolution. Solved and open problems. Theory in Biosciences, 130, pp. 7189.Google Scholar
35. Miller, S.L. (1953) A production of amino acids under possible primitive earth conditions. Science, 117, pp. 528529.Google Scholar
36. Miller, S.L. and Urey, H.C. (1959) Organic compound synthesis on the primitive earth. Science, 130, pp. 245251.Google Scholar
37. McCollom, T.M., Ritter, G. and Simoneit, B.R. (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Origins of Life and Evolutions of Biospheres, 29, pp. 153166.Google Scholar
38. Lawless, J.G. and Yuen, G.U. (1979) Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature, 282, pp. 396398.Google Scholar
39. Oro, J. and Kimball, A.P. (1961) Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Archives of Biochemistry and Biophysics, 94, pp. 217227.Google Scholar
40. Powner, M.W., Gerland, B. and Sutherland, J.D. (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459, pp. 239242.CrossRefGoogle ScholarPubMed
41. Saladino, R., Crestini, C., Pino, S., Costanzo, G. and Di Mauro, E. (2012) Formamide and the origin of life. Physics of Life Reviews, 9, pp. 84104.Google Scholar
42. Despois, D., Crovisier, J., Bockelée-Morvan, D. and Biver, N. (2002) Comets and prebiotic chemistry: the volatile component. In: H. Lacoste (Ed.), Proceedings of the First European Workshop on Exo-Astrobiology, ESA SP-518, Noordwijk, the Netherlands, pp. 123–127.Google Scholar
43. Adande, G.R., Woolf, N.J. and Ziurys, L.M. (2013) Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone. Astrobiology, 13, pp. 439453.CrossRefGoogle ScholarPubMed
44. Wang, J., Gu, J., Nguyen, M.T., Springsteen, G. and Leszczynski, J. (2013) From formamide to adenine: a self-catalytic mechanism for an abiotic approach. Journal of Physics and Chemistry B, 117, pp. 1403914045.Google Scholar
45. Zaher, H.S. and Unrau, P.J. (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA New York, 13, pp. 10171026.Google Scholar
46. Ferris, J.P., Hill, A.R., Liu, R. and Orgel, L.E. (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 381, pp. 5961.Google Scholar
47. Costanzo, G., Pino, S., Ciciriello, F. and Di Mauro, E. (2009) Generation of Long RNA Chains in Water. Journal of Biological Chemistry, 284, pp. 3320633216.Google Scholar
48. Adamala, K. and Szostak, J.W. (2013) Non-enzymatic template-directed RNA synthesis inside model protocells. Science, 342, pp. 10981100.CrossRefGoogle Scholar
49. Szostak, J.W., et al. (2015) Szostak’s Lab Publications. http://molbio.mgh.harvard.edu/szostakweb/publications.html.Google Scholar
50. Budin, I. and Szostak, J.W. (2011) Physical effects underlying the transition from primitive to modern cell membranes. Proceedings of the National Academy of Science, 108, pp. 52495254.Google Scholar
51. Zhang, B. and Cech, T.R. (1997) Peptide bond formation by in vitro selected ribozymes. Nature, 390, pp. 96100.Google Scholar
52. Robertson, M.P., Hesselberth, J.R. and Ellington, A.D. (2001) Optimization and optimality of a short ribozyme ligase that joins non-Watson-Crick base pairings. RNA New York, 7, pp. 513523.CrossRefGoogle Scholar
53. Paul, N. and Joyce, G.F. (2002) A self-replicating ligase ribozyme. Proceedings of the National Academy of Sciences, 99, pp. 1273312740.Google Scholar
54. Unrau, P.J. and Bartel, D.P. (1998) RNA-catalysed nucleotide synthesis. Nature, 395, pp. 260263.Google Scholar
55. Turk, R.M., Chumachenko, N.V. and Yarus, M. (2010) Multiple translational products from a five-nucleotide ribozyme. Proceedings of the National Academy of Sciences USA, 107, pp. 45854589.Google Scholar
56. Gebicki, J.M. and Hicks, M. (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature, 243, pp. 232234.Google Scholar
57. Gebicki, J.M. and Hicks, M. (1976) Preparation and properties of vesicles enclosed by fatty acid membranes. Chemical Physics Lipids, 16, pp. 142160.Google Scholar
58. Hargreaves, W.R. and Deamer, D.W. (1978) Liposomes from ionic, single-chain amphiphiles. Biochemistry (Mosc.), 17, pp. 37593768.Google Scholar
59. Eigen, M. and Schuster, P. (1977) The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften, 64, pp. 541565.CrossRefGoogle Scholar
60. Eigen, M. (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, pp. 465523.Google Scholar
61. Boerlijst, M.C. and Hogeweg, P. (1995) Spatial gradients enhance persistence of hypercycles. Physics of Nonlinear Phenomena, 88, pp. 2939.Google Scholar
62. Hogeweg, P. and Takeuchi, N. (2003) Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Origins of Life and Evolution of the Biospheres, 33, pp. 375403.Google Scholar
63. Takeuchi, N. and Hogeweg, P. (2009) Multilevel selection in models of prebiotic evolution II: a direct comparison of compartmentalization and spatial self-organization. PLoS Computational Biology, 5, e1000542.Google Scholar
64. Boerlijst, M.C. and Hogeweg, P. (1991) Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physics D, 48, pp. 1728.Google Scholar
65. Szathmáry, E. and Demeter, L. (1987) Group selection of early replicators and the origin of life. Journal of Theoretical Biology, 128, pp. 463486.Google Scholar
66. Vaidya, N., et al. (2012) Spontaneous network formation among cooperative RNA replicators. Nature, 491, pp. 7277.Google Scholar
67. May, R.M. (1991) Hypercycles spring to life. Nature, 353, pp. 607608.Google Scholar
68. Boerlijst, M. and Hogeweg, P. (1991) Self-structuring and selection: spiral waves as a substrate for prebiotic evolution. In: C.G. Langton, C. Taylor, J.D. Farmer, S. Rasmussen (Eds), Artificial Life II, Vol. 2, (Boston, USA: Addison-Wesley), pp. 255–276.Google Scholar
69. Nowak, M.A.. Evolutionary Dynamics: Exploring the Equations of Life (Belknap Press, 2006).Google Scholar
70. Mansy, S.S., et al. (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature, 454, pp. 122125.Google Scholar
71. Zhu, T.F. and Szostak, J.W. (2009) Coupled growth and division of model protocell membranes. Journal of the American Chemical Society, 131, pp. 57055713.Google Scholar
72. Schrum, J.P., Zhu, T.F. and Szostak, J.W. (2010) The origins of cellular life. Cold Spring Harbor Perspectives on Biology, 2, a002212.Google Scholar
73. Service, R.F. (2013) The life force. Science, 342, pp. 10321034.Google Scholar
74. Gelenbe, E., Seref, E. and Xu, Z. (2001) Simulation with learning agents. Proceedings of the IEEE, 89, pp. 148157.Google Scholar
75. Gelenbe, E. (2007) Dealing with software viruses: a biological paradigm. Information Security Technical Report, 12, pp. 242250.CrossRefGoogle Scholar
76. Ören, T.L., Numrich, S.K., Uhrmacher, A.M., Wilson, L.F. and Gelenbe, E. (2000) Agent-directed simulation: challenges to meet defense and civilian requirements. in Proceedings of the 32nd conference on Winter simulation (Society for Computer Simulation International, San Diego, CA, USA), pp. 1757–1762.Google Scholar
77. Wasik, S., Jackowiak, P., Figlerowicz, M. and Blazewicz, J. (2014) Multi-agent model of hepatitis C virus infection. Artificial Intelligence Medicine, 60, pp. 123131.Google Scholar
78. Wasik, S., Prejzendanc, T. and Blazewicz, J. (2013) ModeLang – experts-friendly language for describing viral infection models. Computational and Mathematical Methods in Medicine, 8.Google Scholar
79. Wasik, S., et al. (2010) Towards prediction of HCV therapy efficiency. Computational and Mathematical Methods in Medicine, 11(2), pp. 185199.Google Scholar
80. Pietal, M.J., Szostak, N., Rother, K.M. and Bujnicki, J.M. (2012) RNAmap2D–calculation, visualization and analysis of contact and distance maps for RNA and protein-RNA complex structures. BMC Bioinformatics, 13, p. 333.Google Scholar