Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T03:18:01.307Z Has data issue: false hasContentIssue false

Tree-rings, absolute chronology and climatic change

Published online by Cambridge University Press:  13 July 2009

Abstract

In the Hohenheim tree-ring laboratory, two long tree-ring chronologies have been built, spanning the past 11 600 years. This is the world's longest continuous tree-ring calendar. It has become the backbone of the calibration of the radiocarbon time scale, offering absolute and accurate dates for archaeology, vegetation history and paleoclimate studies. 14C analyses of the tree-ring chronologies provide insight into the process controlling the production of cosmogenic nuclides, i.e. mainly the geomagnetic dipole moment and solar variability. They also set geochemical constraints to variations in the carbon cycle during a major climatic excursion.

Type
Research Article
Copyright
Copyright © Academia Europaea 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ferguson, C. W. and Graybill, D. A. (1983) Dendrochronology of Bristlecone Pine: a progress report.In Proceedings of the 11th International 14C Conference. Stuiver, M. and Kra, R. S. (Eds) Radiocarbon 25, 2, 287288.CrossRefGoogle Scholar
2.Becker, B. (1992) The history of dendrochronology and radiocarbon calibration. In Radiocarbon After Four Decades: An Interdisciplinary Perspective. Taylor, R. E., Lony, A. and Kra, R. S. (Eds) p. 3449, Springer, New York, 1992.CrossRefGoogle Scholar
3.Becker, B., Kromer, B., and Trimborn, P. (1991) A stable-isotope tree-ring timescale of the Late Glacial/Holocene Boundary. Nature, 353, 647649.CrossRefGoogle Scholar
4.Kromer, B. and Becker, B. (1993) German oak and pine calibration, 72009400 BC. Radiocarbon, 35 (1), 125–135.Google Scholar
5.Stuiver, M. and Reimer, P. (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35 (1), 215230.CrossRefGoogle Scholar
6.van der Plicht, J. (1993) The Groningen Radiocarbon Calibration Program, Radiocarbon, 35 (1), 231237.CrossRefGoogle Scholar
7.Ramsey, C. B. (1994) OxCal Program (Oxford Research Laboratory for Archaeology).Proceedings of the 15th Radiocarbon Conference,Glasgow1994.Google Scholar
8.Renfrew, C. (1970) The tree-ring calibration of radiocarbon: an archeological evaluation. Proceedings of the Prehistoric Society, 36, 280311.CrossRefGoogle Scholar
9.Korfmann, M. and Kromer, B. Demircihüyük, Besik-Tepe, Troia—Eine Zwischenbilanz zur Chronologie dreier Orte in Westanatolien. Studia Troica 3, Verlag Philipp von Zabern, Mainz, 1993.Google Scholar
10.Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. (1991) Geomagnetic field control of 14C production over the last 80 ky: implications of the radiocarbon time scale Geophys. Res. Lett., 18, 18851888.CrossRefGoogle Scholar
11.Stuiver, M., Braziunas, T., Becker, B. and Kromer, B. (1991) Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Q. Res. 35, 124.CrossRefGoogle Scholar
12.Stuiver, M. and Braziunas, T. F. (1993) Modelling atmospheric influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 36 (1), 137189.CrossRefGoogle Scholar
13.Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélière, M. A., Sonstegaard, E. and Duplessy, J.-C. (1994) The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. EPSL, 126, 4, 275288.CrossRefGoogle Scholar
14.Pilcher, J. R., Baillie, M. G. L., Schmidt, B. and Becker, B. (1984) A 7272 year tree-ring chronology for western Europe. Nature, 312, 150152.CrossRefGoogle Scholar
15.Francey, R. J. and Farquhar, G. D. (1982) An explanation of C-13/C-12 variations in tree rings. Nature 297, 2831.CrossRefGoogle Scholar
16.Leavitt, S. W. and Long, A. (1988) Stable carbon isotope chronologies from trees in the southwestern United States. Global Biogeochemical Cycles, 2, 189198.CrossRefGoogle Scholar
17.Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, G. (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
18.Broecker, W. S. and Denton, G. H. (1989) The role of ocean-atmosphere reorganisations in glacial cycles. Geochimica et Cosmochimica Acta, 53, 24652501.CrossRefGoogle Scholar
19.Mangerud, J., Andersen, S. T., Berglund, B. E. and Donner, J. J. (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109128.CrossRefGoogle Scholar