Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T12:40:52.459Z Has data issue: false hasContentIssue false

TOPO-EUROPE: Coupled Deep Earth – Surface Processes in Europe

Published online by Cambridge University Press:  01 October 2009

S. A. P. L. Cloetingh*
Affiliation:
Department of Tectonics, Faculty of Earth and Life Sciences, VU University Amsterdam, The Netherlands. E-mail: [email protected]
P. A. Ziegler*
Affiliation:
Geological-Paleontological Institute, University of Basel, Switzerland. E-mail: [email protected]

Abstract

TOPO-EUROPE is a multidisciplinary international research program that addresses the interaction of processes inherent to the deep Earth (lithosphere, mantle) with surface processes (erosion, climate, sea level), which together shaped the topography of Europe. The objective of the TOPO-EUROPE project is to assess neotectonic deformation rates and to quantify related geo-risks, such as earthquakes, flooding, landslides, rock falls and volcanism. Research, incorporating iterative data interactive modelling, focuses on the lithosphere memory and neotectonics, with special attention on the thermo-mechanical structure of the lithosphere, mechanisms controlling large-scale plate boundary and intraplate deformations, anomalous subsidence and uplift, and links with surface processes and topography evolution. The TOPO-EUROPE natural laboratories, in which these processes are analysed, cover a wide range of geodynamic settings. These include the post-collisional Alpine/Carpathian/Pannonian-Basin system, the very active Aegean-Anatolian and Apennines-Tyrrhenian orogens and back-arc basins, the Caucasus-Levant area in the Arabia-Europe collision zone, the Iberian Peninsula caught up between Alpine orogens, the meta-stable West and Central European Platform, the stable East-European Platform and the seismically active and elevated Scandinavian continental margin. The TOPO-EUROPE project is a component of the International Lithosphere Program and was initiated with the support of Academia Europaea. A European Science Foundation EUROCORES project provides funding for part of the TOPO-EUROPE research. Other parts of TOPO-EUROPE require support by participating organizations.

Type
Research Articles
Copyright
Copyright © Academia Europaea 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cloetingh, S. A. P. L., Ziegler, P. A., Bogaard, P. J. F., Andriessen, P. A. M., Artemieva, I. M., Bada, G., Balen, R. T., Beekman, F., Ben-Avraham, Z., Brun, J. P., Bunge, H. P., Burov, E. B., Carbonell, R., Facenna, C., Friedrich, A., Gallart, J., Green, A. G., Heidbach, O., Jones, A. G., Matenco, L., Mosar, J., Oncken, O., Pascal, C., Peters, G., Sliaupa, S., Soesoo, A., Spakman, W., Stephenson, R. A., Thybo, H., Torsvik, T., de Vicente, G. and Wenzel, F., M. J. R. Wortel and Topo-Europe-Working-Group (2007) TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 58, 1118.CrossRefGoogle Scholar
2.Cloetingh, S. A. P. L. and Cornu, T. G. M. (eds) (2005) Neotectonics and quaternary fault-reactivation in Europe’s intraplate lithosphere. Quaternary Science Reviews, 24, 235508.CrossRefGoogle Scholar
3.Dezes, P., Schmid, S. M. and Ziegler, P. A. (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389, 133.CrossRefGoogle Scholar
4.Ziegler, P. A. and Dezes, P. (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global and Planetary Change, 58, 237269.CrossRefGoogle Scholar
5.Cloetingh, S., Ziegler, P. A., Beekman, F., Andriessen, P. A. M., Matenco, L., Bada, G., Garcia-Castellanos, D., Hardebol, N., Dezes, P. and Sokoutis, D. (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quaternary Science Reviews, 24, 241304.CrossRefGoogle Scholar
6.Muller, B., Wehrle, V., Zeyen, H. and Fuchs, K. (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics, 275, 199219.CrossRefGoogle Scholar
7.Golke, M., Cloetingh, S. and Coblentz, D. (1996) Finite-element modelling of stress patterns along the Mid-Norwegian continental margin, 62 degrees to 68 degrees N. Tectonophysics, 266, 3353.CrossRefGoogle Scholar
8.Ziegler, P. A., Bertotti, G. and Cloetingh, S. A. P. L. (2002) Dynamic processes controlling foreland development – the role of mechanical (de)coupling of orogenic wedges and forelands. In: Bertotti, G., Schulmann, K., Cloetingh, S. A. P. L. (eds) Continental Collision and the Tectono-Sedimentary Evolution of Forelands. EGU Stephan Mueller Special Publication, 1, pp. 1757.Google Scholar
9.Guimera, J., Mas, R. and Alonso, A. (2004) Intraplate deformation in the NW Iberian Chain: Mesozoic extension and Tertiary contractional inversion. Journal of the Geological Society, 161, 291303.CrossRefGoogle Scholar
10.Goes, S., Govers, R. and Vacher, P. (2000) Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical Research-Solid Earth, 105, 1115311169.CrossRefGoogle Scholar
11.Dezes, P., Schmid, S. M. and Ziegler, P. A. (2005) Reply to comments by L. Michon and O. Merle on ‘Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere’ by P. Dezes, S. M. Schmid and P. A. Ziegler. Tectonophysics 389 (2004) 1–33. Tectonophysics, 401, 257262.CrossRefGoogle Scholar
12.Granet, M., Stoll, G., Dorel, J., Achauer, U., Poupinet, G. and Fuchs, K. (1995) Massif-Central (France) – new constraints on the geodynamical evolution from teleseismic tomography. Geophysical Journal International, 121, 3348.CrossRefGoogle Scholar
13.Ritter, J. R. R., Jordan, M., Christensen, U. R. and Achauer, U. (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth and Planetary Science Letters, 186, 714.CrossRefGoogle Scholar
14.Cloetingh, S., Beekman, F., Ziegler, P. A., Van Wees, J.-D. and Sokutis, D. (2008) Post-rift compressional reactivation potential of passive margins and extensional basins. In: Johnson, H., Doré, A. G., Gatliff, R. W., Holdsworth, R. E., Lundin, E. R., Ritchie, J. D. (eds) The Nature and Origin of Compressive Margins (Geological Society of London, Special Publications), pp. 2769.Google Scholar
15.Cloetingh, S., Burov, E. and Poliakov, A. (1999) Lithosphere folding: primary response to compression? (from central Asia to Paris basin). Tectonics, 18, 10641083.CrossRefGoogle Scholar
16.Cloetingh, S. and Burov, E. B. (1996) Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124, 695723.CrossRefGoogle Scholar
17.vanWees, J. D. and Cloetingh, S. (1996) 3D Flexure and intraplate compression in the North Sea Basin. Tectonophysics, 266, 343359.CrossRefGoogle Scholar
18.Houtgast, R. F. and van Balen, R. T. (2000) Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change, 27, 131146.CrossRefGoogle Scholar
19.Meyer, W. and Stets, J. (2002) Pleistocene to Recent tectonics in the Rhenish Massif (Germany). Netherlands Journal of Geosciences, 81, 217221.CrossRefGoogle Scholar
20.Garcia-Castellanos, D., Cloetingh, S. and Van Balen, R. (2000) Modelling the middle pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel? Global and Planetary Change, 27, 3952.CrossRefGoogle Scholar
21.Sissingh, W. (2006) Syn-kinematic palaeogeographic evolution of the West European Platform; correlation with Alpine plate collision and foreland deformation. In: Van de Graaff, W. J. E., (ed.), Tertiary evolution of the West European platform; syn-kinematic stratigraphy and palaeogeography. Netherlands Journal of Geosciences, 85, 131180.Google Scholar
22.Stackebrandt, W. (2008) Neotectonics of the niederlausitz area, Eastern Germany. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 159, 117122.Google Scholar
23.Cloetingh, S. A. P. L. and Cornu, T. (2005) Surveys on environmental tectonics. Quaternary Science Reviews, 24, 235240.CrossRefGoogle Scholar
24.Cloetingh, S., Cornu, T., Ziegler, P. A. and Beekman, F., and ENTECWorkingGroup (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth-Science Reviews, 74, 127196.CrossRefGoogle Scholar
25.Artemieva, I. M., Thybo, H. and Kaban, M. K. (2006) Deep Europe today: geophysical synthesis of the uppermantle structure and lithospheric processes over 3,5 Ga. In: Gee, D., Stephenson, R. A. (eds) European Lithosphere Dynamics. Geological Society, London, Memoir, 32, 1141.Google Scholar
26.Spakman, W., van der Lee, S. and van der Hilst, R. (1993) Travel-time tomography of the European Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors, 79, 374.CrossRefGoogle Scholar
27.Dèzes, P. and Ziegler, P. A. (2004) Moho depth map of Western and Central Europe. EUCOR-URGENT home page (http://www.unibas.ch/eucor-urgent).Google Scholar
28.Tesauro, M., Kaban, M. K. and Cloetingh, S. A. P. L. (2008) EuCRUST-07: A new reference model for the European crust. Geophysical Research Letters, 35.CrossRefGoogle Scholar
29.Hardebol, N. J., Beekman, F., Cloetingh, S., Tesauro, M. and Ziegler, P. A. (2009) Spatial strength variations in Europe’s lithosphere: inferences from 3-D Rheological modeling. Tectonophysics, submitted.Google Scholar
30.Ziegler, P. A. (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. Memoir 198 pp, American Association of Petroleum Geologists.CrossRefGoogle Scholar
31.Carter, N. L. and Tsenn, M. C. (1987) Flow properties of continental lithosphere. Tectonophysics, 136, 2763.CrossRefGoogle Scholar