Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T03:23:59.615Z Has data issue: false hasContentIssue false

Progress in Genetic Engineering of Plants

Published online by Cambridge University Press:  13 July 2009

Abstract

Plant gene engineering has become a promising sector of biotechnology. Recently, genetically engineered tomato and pumpkin varieties have been put on the market in the US. Many other crops are undergoing field tests and will soon be commercially available. The development of pest-resistant varieties may provide a substantial contribution to a sustainable agriculture. Pest resistance and higher yield are important in the face of the growing world population. There are also major industrial applications, such as engineering a desired oil or starch composition and increasing the level of certain valuable secondary metabolites.

Type
Research Article
Copyright
Copyright © Academia Europaea 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kahl, G. and Schell, J. (1982) Molecular Biology of Plant Tumors. New York, Academic Press.Google Scholar
2.De Cleene, M. and De Ley, J. (1976) The host range of crown-gall. Bot. Rev. 42, 389466.CrossRefGoogle Scholar
3.Braun, A. C. and White, P. R. (1943) Bacteriological sterility of tissues derived from secondary cross gall tumors. Phytopathology 33, 85100.Google Scholar
4.Ménagé, A. and Morel, G. (1965) Sur la présence d'un acide aminé nouveau dans le tissu de crown-gall. C.R. Soc. Biol. (Paris) 159, 561562.Google Scholar
5.Ellis, J. G. and Murphy, P. J. (1981) Four new opines from crown gall tumors – their detection and properties. Mol. Gen. Genet. 181, 3643.CrossRefGoogle Scholar
6.Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M. and Schell, J. (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J. Mol. Biol. 86, 109127.CrossRefGoogle ScholarPubMed
7.Chilton, M.-D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P. and Nester, E. W. (1977) Stable incorporation plasmid DNA into higher plant cells: the molecular basis of crown gall tumori-genesis. Cell 11, 263271.CrossRefGoogle Scholar
8.Schell, J., De Beuckeleer, M., De Block, M., De Greve, H., Depicker, A., De Vos, G., De Vos, R., De Wilde, M., Dhaese, P., Dobbelaere, M.-R., Engler, G., Genetello, C., Hernalsteens, J.-P., Holsters, M., Jacobs, A., Messens, E., Seurinck, J., Silva, A., Van Haute, E., Van Montagu, M., Van Vliet, F., Villarroel, R. and Zaenen, I. (1979) Crown gall: transfer of bacterial DNA to plants via the Ti-plasmid. In Nucleic acids in plants, Vol. II, Hall, T. C., and Davies, J. (Eds). Boca Raton, CRC Press, pp. 195210.Google Scholar
9.Bolton, G. W., Nester, E. W. and Gordon, M. P. (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232, 983985.CrossRefGoogle ScholarPubMed
10.Stachel, S. E., Messens, E., Van Montagu, M. and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature (London) 318, 624629.CrossRefGoogle Scholar
11.Stachel, S. E. and Zambryski, P. (1986) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47, 155157.CrossRefGoogle ScholarPubMed
12.Zambryski, P. (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann. Rev. Genet. 22, 130.CrossRefGoogle ScholarPubMed
13.Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffman, N. L. and Woo, S. C. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 48034807.CrossRefGoogle ScholarPubMed
14.Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M. and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 21432150.CrossRefGoogle ScholarPubMed
15.Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J.-P., Van Montagu, M. and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987995.CrossRefGoogle ScholarPubMed
16.Bevan, M. W., Flavell, R. B. and Chilton, M.-D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature (London) 304, 184187.Google Scholar
17.Goodman, R. M., Hauptli, H., Crossway, A. and Knauf, V. C. (1987) Gene transfer in crop improvement. Science 236, 4854.Google Scholar
18.Borlaug, N. E. (1983) Contributions of conventional plant breeding to food production. Science 219, 689693.CrossRefGoogle ScholarPubMed
19.Márton, L., Wullems, G. J., Molendijk, L. and Schilperoort, R. A. (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature (London) 277, 129130.Google Scholar
20.De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J. and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3, 16811689.CrossRefGoogle ScholarPubMed
21.Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G. and Fraley, R. T. (1985) A simple and general method for transferring genes into plants. Science 227, 12291231.Google Scholar
22.Angenon, G. and Van Montagu, M. (1992) Transgenic plants: Agrobacterium-mediated transformation and its application in plant molecular biology research and biotechnology. In Biotechnology and Crop Improvement in Asia, Moss, J. P. (Ed.). Patancheru, International Crops Research Institute for the Semi–Arid Tropics, pp. 181199.Google Scholar
23.Datta, S. K., Peterhans, A., Datta, K. and Potrykus, I. (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Bio/technology 8, 736740.Google Scholar
24.Potrykus, I., Saul, M. W., Petruska, J., Paszkowski, J. and Shillito, R. D. (1985) Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199, 183188.CrossRefGoogle Scholar
25.Fromm, M. E., Taylor, L. P. and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature (London) 319, 791793.CrossRefGoogle ScholarPubMed
26.Miki, B. L. A., Reich, T. J. and Iyer, V. N. (1987) Microinjection: an experimental tool for studying and modifying plant cells. In Plant DNA Infectious Agents (Plant Gene Research, Vol. 3), Hohn, Th., and Schell, J. (Eds). Wien. Springer-Verlag, pp. 249265.CrossRefGoogle Scholar
27.Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature (London) 327, 7073.CrossRefGoogle Scholar
28.Sanford, J. C. (1988) The biolistic process. Trends Biotechnol. 6, 299302.CrossRefGoogle Scholar
29.Christou, P. (1993) Particle gun mediated transformation. Curr. Opin. Biotechnol. 4, 135141.Google Scholar
30.Rissler, J. and Mellon, M. (1994) No commercial gene-altered crop approvals until fed gov't assesses the ecological risks. Genet. Eng. News 14 (3), 4/12.Google Scholar
31.Lambert, B. and Peferoen, M. (1992) Insecticidal promise of Bacillus thuringiensis. BioScience 42, 112122.Google Scholar
32.Peferoen, M. (1991) Bacillus thuringiensis in crop protection. Agro-Industry Hi-Tech 2 (6), 59.Google Scholar
33.Höfte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242255.Google ScholarPubMed
34.Meadows, J., Gill, S. S. and Bone, L. W. (1990) Bacillus thuringiensis strains affect population growth on the free-living nematode Turbatrix aceti. Invertebr. Reprod. Dev. 17, 7376.CrossRefGoogle Scholar
35.Haider, M. Z., Knowles, B. H. and Ellar, D. J. (1986) Specificity of Bacillus thuringiensis var. colmeri insecticidal δ-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur. J. Biochem. 156, 531540.Google Scholar
36.Harris, J. G. (1993) Prospects for the Bt business … present and future. Agro-Food-Industry Hi-Tech 3 (6), 2930.Google Scholar
37.Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M. and Leemans, J. (1987) Insect resistance in transgenic plants expressing modified Bacillus thuringiensis toxin genes. Nature (London) 328, 3337.CrossRefGoogle Scholar
38.Delannay, X., LaVallee, B. J., Proksch, R. K., Fuchs, R. L., Sims, S. R., Greenplate, J. T., Marrone, P. G., Dodson, R. B., Augustine, J. J., Layton, J. G. and Fischhoff, D. A. (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/technology 7, 12651269.Google Scholar
39.Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L. and Fischhoff, D. A. (1991) Modification of the coding sequence enhances plant expression on insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 33243328.CrossRefGoogle ScholarPubMed
40.Gould, F. (1988) Evolutionary biology and genetically engineered crops. BioScience 38, 2633.Google Scholar
41.Van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D. and Van Mellaert, H. (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 7274.Google Scholar
42.Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E. and Stalker, D. M. (1985) Expression in plants of a mutant aroA gene from Salmonella thyphimurium confers tolerance to glyphosate. Nature (London) 317, 741744.CrossRefGoogle Scholar
43.Fillatti, J. J., Kiser, J., Rose, R. and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/technology 5, 726730.Google Scholar
44.Hinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., Fischhoff, D. A., Re, D. B., Fraley, R. T. and Horsch, R. B. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/technology 6, 915922.Google Scholar
45.Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G. and Fraley, R. T. (1986) Engineering herbicide tolerance in transgenic plants. Science 233, 478481.Google Scholar
46.Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K. and Thompson, C. J. (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205, 4250.Google Scholar
47.Thompson, C. J., Movva, N. Rao, Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M. and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6, 25192523.Google Scholar
48.De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, R., Thompson, C., Van Montagu, M. and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 25132518.CrossRefGoogle Scholar
49.De Block, M., De Brouwer, D. and Tenning, P. (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91, 694701.CrossRefGoogle ScholarPubMed
50.Botterman, J. and Leemans, J. (1988) Engineering herbicide resistance in plants. Trends Genetics 4, 219222.CrossRefGoogle ScholarPubMed
51.De Block, M. (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol. 93, 11101116.CrossRefGoogle ScholarPubMed
52.D'Halluin, K., Botterman, J. and De Greef, W. (1990) Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Science 30, 866871.CrossRefGoogle Scholar
53.De Greef, W., Delon, R., De Block, M., Leemans, J. and Botterman, J. (1989) Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/technology 7, 6164.Google Scholar
54.Wilson, T. M.A. (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90, 31343141.CrossRefGoogle ScholarPubMed
55.Abel, P. Powell, Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. and Beachy, R. N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738743.CrossRefGoogle ScholarPubMed
56.Sequeira, L. (1983) Mechanisms of induced resistance in plants. Ann. Rev. Microbiol. 37, 5179.CrossRefGoogle ScholarPubMed
57.Beachy, R. N., Loesch-Freis, S. and Tumer, N. E. (1990) Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28, 451474.CrossRefGoogle Scholar
58.Beachy, R. N. (1993) Transgenic resistance to plant viruses. Semin. Virol. 4, 327416.Google Scholar
59.Nelson, R. S., McCormick, S. M., Delannay, X., Dubé, P., Layton, J., Anderson, E. J., Kaniewska, M., Proksch, R. K., Horsch, R. B., Rogers, S. G., Fraley, R. T. and Beachy, R. N. (1988) Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/technology 6, 403409.Google Scholar
60.Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, J., Delannay, X. and Tumer, N. E. (1990) Field resistance of transgenic Russett Burbank potato to effects of infection by potato virus X and potato virus Y. Bio/technology 8, 750754.Google Scholar
61.Baulcombe, D. (1994) Novel strategies for engineering virus resistance in plants. Curr. Opin. Biotechnol. 5, 117124.Google Scholar
62.De Zoeten, G. A. (1991) Risk assessment: do we let history repeat itself? Phytopathology 81, 585586.Google Scholar
63.Malyshenko, S. I., Kondakova, O. A., Nazarova, J. V., Kaplan, I. B., Taliansky, M. E. and Atabekov, J. G. (1993) Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J. Gen. Virol. 74, 11491156.CrossRefGoogle ScholarPubMed
64.Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., and Galeffi, P. (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature (London) 366, 469472.Google Scholar
65.Lamb, C. J., Ryals, J. A., Ward, E. R. and Dixon, R. A. (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/technology 10, 14361445.Google Scholar
66.Broglie, R. and Broglie, K. (1993) Production of disease-resistant transgenic plants. Curr. Opin. Biotechnol. 4, 148151.CrossRefGoogle Scholar
67.Cornelissen, B. J. C. and Melchers, L. S. (1993) Strategies for control of fungal diseases with transgenic plants. Plant Physiol. 101, 709712.Google Scholar
68.Fischer, R. and Hain, R. (1994) Plant disease resistance resulting from the expression of foreign phytoalexins. Curr. Opin. Biotechnol. 5, 125130.Google Scholar
69.Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 11941197.Google Scholar
70.Endo, Y., Tsurugi, K. and Ebert, R. F. (1988). The mechanism of action of barley toxin: a type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochim. Biophys. Acta 954, 224226.Google Scholar
71.Logemann, J., Jach, G., Tommerup, H., Mundy, J. and Schell, J. (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in tobacco plants. Bio/technology 10, 305308.Google Scholar
72.Hain, R., Reif, H.-J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stöcker, R. H. and Stenzel, K. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature (London) 361, 153156.CrossRefGoogle Scholar
73.Goddijn, O. J. M., Lindsey, K., van der Lee, F. M., Klap, J. C. and Sijmons, P. C. (1993). Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. Plant J. 4, 863873.CrossRefGoogle ScholarPubMed
74.Niebel, A., Gheysen, G. and Van Montagu, M. (1994) Plant-cyst nematode and plant-root-knot nematode interactions. Parasitology Today 10, 424430.Google Scholar
75.Opperman, C. H., Taylor, C. G. and Conkling, M. A. (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263, 221223.CrossRefGoogle ScholarPubMed
76.Mayo, H. (1980) The Theory of Plant Breeding. Oxford, Clarendon Press.Google Scholar
77.Goldberg, R. B. (1988) Plants: novel developmental processes. Science 240, 14601467.CrossRefGoogle ScholarPubMed
78.Seurinck, J., Truettner, J. and Goldberg, R. B. (1990) The nucleotide sequence of an anther-specific gene. Nucleic Acids Res. 18, 3403.Google Scholar
79.Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. and Goldberg, R. B. (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature (London) 347, 737741.CrossRefGoogle Scholar
80.Mariani, C., Gossele, V., De Beuckeleer, M., De Block, M., Goldberg, R. B., De Greef, W. and Leemans, J. (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature (London) 357, 384387.Google Scholar
81.Smith, C. J.S., Watson, C. F., Ray, J., Bird, C. R., Morris, P. C., Schuch, W. and Grierson, D. (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature (London) 334, 724726.Google Scholar
82.Theologis, A. (1994) Control of ripening. Curr. Opin. Biotechnol. 5, 152157.CrossRefGoogle Scholar
83.Cocking, E. C., Webster, G., Batchelor, C. A. and Davey, M. R. (1994) Nodulation of non-legume crops. A new look. Agro-Food-Industry Hi-Tech 5 (1), 2124.Google Scholar
84.Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D., Reupold-Popp, P., Sandermann, H. Jr and Langebartels, C. (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/technology 12, 165168.Google Scholar
85.Zelitch, I. (1992) Factors affecting expression of enhanced catalase activity in a tobacco mutant with O2-resistant photosynthesis. Plant Physiol. 98, 13301335.Google Scholar
86.Kishore, G. M. and Somerville, C. R. (1993) Genetic engineering of commercially useful biosynthetic pathways in transgenic plants. Curr. Opin. Biotechnol. 4, 152158.Google Scholar
87.Altenbach, S. B., Pearson, K. W., Meeker, G., Staraci, L. C. and Sun, S. S. M. (1989) Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol. Biol. 13, 513522.Google Scholar
88.De Clercq, A., Vandewiele, M., Van Damme, J., Guerche, P., Van Montagu, M., Vandekerckhove, J. and Krebbers, E. (1990) Stable accumulation of modified 2S albumin seed storage proteins with higher methionine contents in transgenic plants. Plant Physiol. 94, 970979.Google Scholar
89.Vandekerckhove, J., Van Damme, J., Van Lijsebettens, M., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M. and Krebbers, E. (1989) Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/technology 7, 929932.Google Scholar
90.Krebbers, E., Bosch, D. and Vandekerckhove, J. (1992) Prospects and progress in the production of foreign proteins and peptides in plants. In Plant Protein Engineering, Shewry, P. R. and Gutteridge, S. (Eds). Cambridge, Cambridge University Press, pp. 315325.Google Scholar
91.Kinney, A. J. (1994) Genetic modification of the storage lipids of plants. Curr. Opin. Biotechnol. 5, 144151.Google Scholar
92.Ohlrogge, J. B. (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol. 104, 821826.Google Scholar
93.Voelker, T. A., Worrell, A. C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D. J., Radke, S. E. and Davies, H. M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257, 7274.CrossRefGoogle ScholarPubMed
94.Stitt, M. (1994) Manipulation of carbohydrate partitioning. Curr. Opin. Biotechnol. 5, 137143.Google Scholar
95.Stark, D. M., Timmerman, K. P., Barry, G. F., Preiss, J. and Kishore, G. M. (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science 258, 287292.Google Scholar
96.Muller-Ruber, B., Sonnewald, U. and Willmitzer, L. (1992) Inhibition of ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 11, 12291238.Google Scholar
97.Worrell, A. C., Bruneau, J.-M., Summerfelt, K., Boersig, M. and Voelker, T. A. (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3, 11211130.Google Scholar
98.Boudet, A. M., Lapierre, C. and Grima-Pettenati, J. (1995) Biochemistry and molecular biology of lignification. New Phytol. 129, 203236.Google Scholar
99.Wink, M. (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens. Theor. Appl. Genet. 75, 225233.Google Scholar
100.Hamill, J. D., Robins, R. J., Parr, A. J., Evans, D. M., Furze, J. M. and Rhodes, M. J. C. (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol. Biol. 15, 2738.Google Scholar
101.Ludwig, S. R., Bowen, B., Beach, L. and Wessler, S. R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247, 449450.Google Scholar
102.Hohn, T. M. and Ohlrogge, J. B. (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol. 97, 460462.Google Scholar
103.Forkmann, G. (1993) Control of pigmentation in natural and transgenic plants. Curr. Opin. Biotechnol. 4, 159165.Google Scholar
104.Paterson, A. H. and Wing, R. A. (1993) Genome mapping in plants. Curr. Opin. Biotechnol. 4, 142147.Google Scholar
105.Tanksley, S. D., Young, N. D., Paterson, A. H. and Bonierbale, M. W. (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/technology 7, 257264.Google Scholar
106.Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 65316535.CrossRefGoogle ScholarPubMed
107.Zabeau, M. and Vos, P. (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application EP 534858A1.Google Scholar
108.Michelmore, R. W., Paran, I. and Kesseli, R. V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88, 98289832.Google Scholar