Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T02:37:37.801Z Has data issue: false hasContentIssue false

Causality in Natural, Technical, and Social Systems

Published online by Cambridge University Press:  01 October 2010

Klaus Mainzer*
Affiliation:
Chair for Philosophy of Science, Carl von Linde Academy, Technical University of Munich, Arcisstrasse 21, D-80333 Munich, Germany. E-mail: [email protected]

Abstract

Since the very beginning of science and philosophy, causality has been a basic category of research. In the theory of dynamical systems, different forms of causality can be distinguished depending on different equations of motion. The question arises how causal relationships can be inferred from observational data. Statistic data analysis often yields information on correlations only, but not on causation. Under special conditions probabilistic distributions of data are connected with causal networks. Causal modeling plays an eminent role in the natural sciences (e.g. physics, chemistry, biology). In engineering sciences, causal dependence must not only be recognized, but constructed and controlled, in order to guarantee reliable and desired functions of technical systems. Control is the inverse problem of causality for engineers. In social sciences, causal networks are used to analyze social and economic interactions in, for example, markets, organizations, and institutions. With respect to volatility shocks and financial crashes, it is a challenge to discover the causes of extreme events. From an epistemic and interdisciplinary point of view, complex nonlinear causal networks are distinguished by universal properties, which are true in natural, technical, and social networks (e.g. scale-invariance, power laws).

Type
Focus: Causality
Copyright
Copyright © Academia Europaea 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Compare European Review, 17(2), 2009, Focus: Complexity, Guest Editor: Klaus Mainzer.Google Scholar
2.Hume, D. (2009) An Enquiry Concerning Human Understanding (eBooks@Adelaide) Section VII, Of the Idea of Necessary Connexion, Part I.Google Scholar
3.Pearl, J. (2000) Causality. Models, Reasoning, and Inferences (Cambridge: Cambridge University Press), Chapter 1.3.Google Scholar
4.Glymour, C. (2001) The Mind’s Arrows. Bayes Nets and Graphical Causal Models in Psychology (Cambridge. MA: The MIT Press), p. 33.CrossRefGoogle Scholar
5.Glymour, C., Scheines, R., Spirtes, P. and Kelly, K. (1987) Discovering Causal Structure. Artificial Intelligence, Philosophy of Science, and Statistical Modeling (Orlando: Academic Press).Google Scholar
6. The abbreviation dates back to the original quotation: ‘Es scheint hart, dem Herrgott in die Karten zu gucken. Aber dass er würfelt und sich telepatischer Mittel bedient (wie es ihm von der gegenwärtigen Quantentheorie zugemutet wird), kann ich keinen Augenblick glauben.’ – About quantum theory in a letter to Cornelius Lanczos, 21 March 1942 (Einstein-Archiv 15-294) quoted in: Calaprice, A. (ed.) (1996) Einstein sagt (Munich: Piper-Verlag), p. 146.Google Scholar
7.Einstein, A., Podolsky, B. and Rosen, N. (1935) Can quantum-mechanical description of reality be considered complete? Physical Review, 47, pp. 777780.CrossRefGoogle Scholar
8.Audretsch, J. and Mainzer, K. (eds) (1996) Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik, 2nd edn (Heidelberg: Spektrum Akademischer Verlag).Google Scholar
9.Mainzer, K. (2007) Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind, 5th edn (New York: Springer).Google Scholar
10.Kaneko, K. (2006) Life: An Introduction to Complex Systems Biology (Berlin: Springer).CrossRefGoogle Scholar
11.Ma, Hong-Wu and Zeng, An-Ping (2005) Reconstruction of metabolic networks from genome information and its structural and functional analysis. In: A. Kriete and R. Eils (eds) Computational Systems Biology (Amsterdam: Elsevier), Fig. 9.10, p. 185.Google Scholar
12.Yu, Jing, Smith, V. A., Wang, P. P., Hartemink, A. J. and Jarvis, E. D. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), pp. 35943603. GeneSim is a code generator for simulators of dynamic systems. GeneSim reads the specification of a dynamic system and produces the code that simulates the system. The specification is expressed using UML or SysML. Code is generated in object-oriented languages like C++, Java. The typical usage of GeneSim is to generate simulators of systems. In this case, it is a genetic network simulator.CrossRefGoogle ScholarPubMed
13.Kim, S., Imoto, S. and Miyano, S. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics, 4, pp. 228235.CrossRefGoogle ScholarPubMed
14.Robinson, P. W. (1973) Counting labeled acyclic digraphs. In: F. Hrary (ed.) New Directions in the Theory of Graphs (New York: Academic Press), pp. 239273.Google Scholar
15.Heckerman, D., Geiger, D. and Chickering, D. M. (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197243; N. Friedman, M. Linial, I. Nachman and D. Peter (2000) Using Bayesian networks to analyze expression data. J. Comput. Biol., 7, pp. 601–620; S. Imoto, T. Goto and S. Miyano (2002) Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pacific Symp. Biocomput., 7, pp. 175–186.CrossRefGoogle Scholar
16.Bekey, G. A. (2005) Autonomous Robots. From Biological Inspiration to Implementation and Control (Cambridge, MA: The MIT Press), p. 80.Google Scholar
17.Thrun, S., Burgard, W. and Fox, D. (2005) Probabilistic Robotics (Cambridge, MA: The MIT Press).Google Scholar
18.Glymour, C. (2001) The Mind’s Arrows. Bayes Nets and Graphical Causal Models in Psychology (Cambridge, MA: The MIT Press), p. 161.CrossRefGoogle Scholar
19.Mainzer, K. (2007) Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind, 5th edn (New York: Springer), p. 393.Google Scholar
20.Réka, A. and Barabási, A.-L. (2002) Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), pp. 4797.Google Scholar
21.Broy, Compare M., Relating Time and Causality in Interactive Distributed Systems (in this volume).Google Scholar
22.Helbing, D., Ammoser, H. and Kühnert, C. (2006) Disasters as extreme events and the importance of network interactions for disaster response management. In: S. Albeverio, V. Jentsch and H. Kantz (eds) Extreme Events in Nature and Society (Berlin: Springer), Fig. 15.6, p. 335.Google Scholar
23.Bachelier, L. (1900) Théorie de la speculation. Dissertation. Annales Scientifiques de l’Ecole Normale Supérieure, 17, pp. 2186.CrossRefGoogle Scholar
24.Einstein, A. (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 17, pp. 549560.CrossRefGoogle Scholar
25.Mainzer, K. (2007) Der kreative Zufall. Wie das Neue in die Welt kommt (München: C.H. Beck).Google Scholar
26.Simon, H. (1957) Administrative Behavior: A Study of Decision Making Processes in Administrative Organizations, 2nd edn (New York: Macmillan).Google Scholar