Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T19:17:32.677Z Has data issue: false hasContentIssue false

The awareness of global climatic and environmental change

Published online by Cambridge University Press:  13 July 2009

Abstract

Present understanding suggests that a doubling of CO2 emission will occur in about 50 years and will lead to global warming of 2–4°C. Data from the past supports this. The paper analyses the factors influencing climatic change and the challenges to humanity this presents.

Type
Research Article
Copyright
Copyright © Academia Europaea 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hansen, J., Rind, D., Lacis, A., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. (1984) Climate sensitivity: analysis of feedback mechanisms. In Geophysical Monograph 29, Hansen, J. E. and Takahashi, T. (eds.). AGU, Washington D.C.288298.Google Scholar
2.Houghton, J. T., Jenkins, G. K. and Ephraums, J. J. (eds.) (1990) IPCC Scientific Assessment Cambridge University Press, Cambridge.Google Scholar
3.Houghton, J. T., Callander, B. A. and Vorney, S. K. (eds.) (1992) Supplementary Report of the IPCC Scientific Assessment. Cambridge University Press, Cambridge.Google Scholar
4.Boden, T. A., Sepanski, R. J. and Stoss, F. W. (1991) Trends 91: A Compendium of Data on Global Climate. Carbon dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), ORNL, CDIAC-46.Google Scholar
5.Siegenthaler, U. and Sarmiento, J. (1993) Atmospheric carbon dioxide and the ocean, Nature 365, 119125.Google Scholar
6.Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., Zumbrunn, R. (1982) Ice core measurements give atmospheric CO2 content during the past 40,000 yr Nature 295, 220223.CrossRefGoogle Scholar
7.Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries Nature 324, 237238.CrossRefGoogle Scholar
8.Keeling, R. B., Bacastow, A. F., Carter, S. C. et al. (1989) A three dimensional model of atmospheric CO2 transport based on observed winds. I. Analysis of observational data. In Aspects of Climate Variability in the Pacific and the Western Americas. Peterson, D. H. (ed.) American Geophysical Union, Washington, 165236.Google Scholar
9.Hansen, J., Lacis, A., Ruedy, R., Sato, M. and Wilson, H. (1993) Global climate change. How sensitive is the world climate? National Geographic Research and Exploration 2, (a), 142158.Google Scholar
10.Lorius, C. and Oeschger, H. (1994) Palaeo-perspectives — Reducing uncertainties in global change? Ambio 23(1), 3036.Google Scholar
11.Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., Lorius, C. (1990) Ice core record of atmospheric methane over the past 160,000 years, Nature 345 127131.CrossRefGoogle Scholar
12.Barnola, J. M., Raynaud, D., Korotkevich, V. S. and Lorius, C. (1987) Vostok ice core: a 160,000 year record of atmospheric CO2 Nature 329, 408414.Google Scholar
13.Lehman, S. J. and Keigwin, L. D. (1992) Sudden changes in north Atlantic circulation during the last deglaciation Nature 356, 757762.Google Scholar
14.Oeschger, H., Beer, J., Siegenthaler, U., Stauffer, B., Dansgaards, W. and Langway, C. C. (1984) Late Glacial Climate History for Ice Cores. Hansen, J. E. and Takahashi, T. (Eds). Geophysical Monograph 29, AGU, Washington DC, 288298.Google Scholar
15.Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N., Hammer, C. U. and Oeschger, H. (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In Geophysical Monograph 29, Hansen, J. E. and Takahashi, T. (Eds). AGU, Washington DC, 288298.Google Scholar
16.Bond, G., Broecker, W., Johnsen, S., Mauns, J., Labeyrie, L., Jouzel, J. and Bonani, G. (1993) Correlations between climate records from north Atlantic sediments and Greenland ice Nature 365, 143147.Google Scholar
17.Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J. and Bond, G. (1993) Evidence for general instability of past climate from a 250-kyr record Nature 364, 218220.Google Scholar
18.GRIP Project Members (1993) Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207.Google Scholar
19.Grootes, P. M. et al. (1993) Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
20.Taylor, K. C. et al. (1993) Electrical conductivity measurements from the GISP 2 and GRIP Greenland ice cores. Nature 366, 549552.CrossRefGoogle Scholar
21.Joos, F., Oeschger, H. and Siegenthaler, U. (1992) Atmospheric CO2 and energy policy—effects of the oil crisis in 1973. Unpublished, Physics Institute, University of Bern, Switzerland.Google Scholar
22.Oeschger, H. (1991) Paleodata, paeoclimate and the greenhouse effect. In limate change: Science, Impacts and Policy. Jäger, J. and Ferguson, H. L. (Eds). Cambridge University Press, Cambridge, 215224.Google Scholar
23.Revelle, R. and Suess, H. (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during past decades. Tellus IX, 1827.Google Scholar