Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T16:56:31.786Z Has data issue: false hasContentIssue false

Peripheral Levels of the Micro-RNA MiR-1202 are Correlated with Changes in Brain Activity and Connectivity During an Antidepressant Treatment

Published online by Cambridge University Press:  23 March 2020

J.P. Lopez
Affiliation:
Max Plank Institute, Stress Neurobiology and Neurogenetics, Munich, Germany Human genetics department, McGill University, Montreal, Canada
F. Pereira
Affiliation:
Radiology department, Nîmes Academic Hospital, Nîmes, France
S. Richard-Devantoy
Affiliation:
Psychiatry department, McGill University, Montreal, Canada
Y. Ding
Affiliation:
Psychiatry department, McGill University, Montreal, Canada
L.M. Fiori
Affiliation:
Psychiatry department, McGill University, Montreal, Canada
P. Niola
Affiliation:
Biomedical Science department, Università degli studi Di Cagliar, Cagliari, Italy
G. Turecki
Affiliation:
Psychiatry department, McGill University, Montreal, Canada
F. Jollant
Affiliation:
Psychiatry department, McGill University, Montreal, Canada Psychiatry department, Nîmes Academic Hospital, Nîmes, France

Abstract

Introduction

Micro-RNAs are short non-coding sequences playing a major role in regulating gene expression. Peripheral levels of the micro-RNA miR-1202 have been shown to predict antidepressant response and to change during treatment. However, it is not clear to what extent these peripheral measures reflect central neural changes in vivo.

Objectives

We aimed at investigating a potential link between peripheral micro-RNA and neuroimaging measures.

Methods

At baseline and after 8 weeks of desvenlafaxine (50–100 mg die), twenty depressed patients were scanned with 3 T magnetic resonance imaging, first at rest then during the Go/NoGo task, a classical test of response inhibition. Blood samples were taken for RNA extraction.

Results

During resting state, baseline miR-1202 levels were predictive of decreased connectivity between the posterior cingulate and the prefrontal, occipital and parietal cortices. Changes in miR-1202 levels were correlated with changes in activity in right precuneus within the default-mode network, and with decreased connectivity between the posterior cingulate and the temporal and prefrontal cortices, and the precuneus. During the Go/NoGo task, baseline levels and changes in these levels were correlated with activity changes in different regions, including bilateral prefrontal, insular, cingulate, and temporal cortices. Finally, secondary analyses suggest an association between miR-1202 levels and glutamate levels measured by spectroscopy in dorsomedial prefrontal cortex.

Conclusions

This is the first study showing that baseline and changes in peripheral levels of one micro-RNA were associated with changes in brain activity and connectivity during an antidepressant treatment. MiR-1202 may act through the modulation of the glutamatergic system.

Type
e-Poster walk: Genetics & molecular neurobiology and neuroscience in psychiatry
Copyright
Copyright © European Psychiatric Association 2017

Disclosure of interest

The authors have not supplied their declaration of competing interest.

Submit a response

Comments

No Comments have been published for this article.